Revista de acesso livre no site www.ufcg.edu.br

Revista Eletrônica de Materiais e Processos, v. 13, n. 2 (2018) 71-98 ISSN 1809-8797

Revisão dos desenvolvimentos recentes em nanofibras de SnO₂ para aplicação em sensores de gás

E. P. Nascimento^{1,2}, H. C. T. Firmino^{1,2}, A. M. C. Santos^{1,2}, R. R. Menezes^{1,2}

¹Programa de Pós-Graduação em Ciência e Engenharia de Materiais, , Centro de Ciência e Tecnologia, Universidade Federal de Campina Grande, Av. Aprígio Veloso 882, Bodocongó, 58429-900, Campina Grande, PB

²Unidade Acadêmica de Engenharia de Materiais, Centro de Ciência e Tecnologia, Universidade Federal de Campina Grande, Av. Aprígio Veloso 882, Bodocongó, 58429-900, Campina Grande, PB

(Recebido em 28/05/2018; revisado em 11/07/2018; aceito em 01/08/2018) (Todas as informações contidas neste artigo são de responsabilidade dos autores)

Resumo:

O SnO₂ tem sido bastante investigado e preparado na forma de nanofibras para aplicação na detecção de uma grande diversidade de gases. Neste sentido, este trabalho apresenta uma revisão de literatura das pesquisas publicadas nos últimos cinco anos referentes à síntese e utilização de nanofibras de SnO₂ sólidas e ocas puras ou modificadas com aditivos no sensoriamento de gases. Para isto, foram coletados artigos recentes que abordam a preparação de sensores de nanofibras eletrofiadas de SnO₂ não dopado e dopado, modificado com aditivos ou de nanocompósitos SnO₂-óxido metálico. Observou-se que o desenvolvimento de diferentes morfologias (nanofibras sólidas, ocas e hierárquicas) e a utilização de uma larga variedade de aditivos, que variam tanto na quantidade utilizada como na forma que estão presentes/inseridos nas nanofibras SnO₂, têm sido as estratégias das pesquisas mundiais para melhorar as propriedades sensoras do SnO₂. As fibras sólidas são produzidas em diâmetros que variam de 30 a 250 nm, enquanto que as fibras ocas apresentam diâmetros entre 80 e 750 nm. Os aditivos que têm produzido melhor otimização da resposta sensora de nanofibras de SnO₂ são: o ZnO, CuO e Au. Estes aditivos estão presentes principalmente como modificadores superficiais ou formando nanocompósitos com o SnO₂. As nanofibras vêm se mostrando a nova fronteira para o desenvolvimento de sensores de SnO₂.

Palavras-chave: SnO₂; nanofibras sólidas; nanofibras ocas; sensores de gás; resposta sensora.

Abstract:

 SnO_2 has been extensively investigated and prepared as nanofibers for application in the detection of a wide range of gases. In this sense, this work presents a literature review of the researches published in the last five years regarding the synthesis of pure and additive modified solid and hollow SnO_2 nanofibers and their use in gas sensing. In order to do this, we have collected recent articles covering the preparation of sensors from undoped and doped SnO_2 , additive-modified or SnO_2 -metallic oxide composite electrospun nanofibers. It has been observed that the development of different morphologies (solid, hollow, and heterostructured nanofibers) and the use of a large variety of additives, varying both in the amount used and in the form that are present/inserted in SnO_2 nanofibers, have been the strategies of worldwide research to improve the sensing properties of SnO_2 . Solid fibers are produced in diameters ranging from 30 to 250 nm, while hollow fibers have diameters between 80 and 750 nm. The additives that have been producing better optimization of the SnO_2 nanofibers' sensing response are: ZnO, CuO, and Au. These additives are present mainly as surface modifiers or forming nanocomposites with SnO_2 .

Keywords: SnO₂; solid nanofibers; hollow nanofibers, gas sensors, sensor response.

1. Introdução

A síntese de nanomateriais de óxidos métálicos semicondutores com tamanhos e formas controladas é um área que tem sido bastante investigada nos últimos anos, e isso se deve à dependência das propriedades físicas, químicas, eletrônicas, ópticas e catalíticas com relação ao tamanho e a forma destes materiais [1-7]. Entre os óxidos metálicos semicondutores, nanomateriais de dióxido de estanho (SnO₂) têm recebido especial atenção por conta da diversidade de

*E-mail: emanueluepb@gmail.com (E. P. Nascimento)

aplicações deste material [8], das suas propriedades ópticas e elétricas superiores e da sua elevada estabilidade química e térmica [6, 9-12].

O SnO₂ é um óxido metálico semicondutor do tipo n, com gap de energia direto de ~3,6 eV (300 K) [9, 10], cuja condutividade depende da concentração de íons de oxigênio adsorvidos na sua superfície [6]. Dentre os óxidos metálicos semicondutores aplicados no sensoriamento de gases, o SnO₂ é o mais utilizado [13] e isto se deve à grande diversidade de gases aos quais este material tem sensibilidade, além de suas propriedades elétricas e do baixo custo produtivo [9, 11, 12].

Existe um grande interesse em fabricar dispositivos sensores a partir do SnO2 nanoestruturado, uma vez que, em escala nanométrica, a área superficial específica deste material é aumentada e, conseqüentemente, o número de sítios ativos para adsorção de moléculas gasosas pode ser incrementado [14]. Neste sentido, diversas morfologias nanoestruturadas de SnO₂ têm sido investigadas para a plicação em sensores de gás, tais como nanopartículas [15-18], nanoesferas [19-22], nanotubos [23-25], nanofios [26, 27], nanocintos [28-31], nanofibras [9, 32-34], nanofolhas [35, 36], entre outras. Dentre estas nanoestruturas, as nanofibras são particularmente interessantes para aplicação em sensores de gás, pois possuem um morfologia direcional que facilita o transporte dos portadores de carga [37, 38] e uma elevada área superficial por volume de material que possibilita um melhor contato com moléculas gasosas [9, 39], que são responsáveis pela condutividade superficial deste material [40]. Além disso, nanofibras são contínuas, o que lhes confere uma elevada resistência axial e ao mesmo tempo uma flexibilidade elevada [41]. Estas podem ser fabricadas com distintas morfologias por meio do controle das condições de processo, podendo ser produzidas nanofibras ocas, preenchidas, lisas, rugosas, particuladas, entre outras [42].

A morfologia das nanofibras de óxidos cerâmicas depende fortemente do método de síntese utilizado. Por outro lado, vários métodos de preparação de nanofibras cerâmicas têm sido reportados na literatura, como por exemplo a eletrofiação [32-34], fiação por eletro-sopro (EBS) [3, 43], fiação centrifugal [44], laser spinning [45] e, mais recentemente, fiação por sopro em solução [46-48]. A técnica de eletrofiação se destaca das demais em virtude da sua versatilidade para a preparação de nanofibras de uma grande variedade de materiais, o maior controle sobre o diâmetro, a morfologia e estrutura das fibras, a facilidade de modificação através da adição de substâncias à solução inicial [49], entre outras. A eletrofiação é o método mais utilizado na preparação de nanofibras de SnO₂, como mostram a grande diversidade de trabalhos publicados na literatura [4, 9, 10, 25, 32-34], obtendo-se com sucesso nanofibras com morfologias controlas e diâmetros médios variando de 10 nm até alguns microns [49].

Além do controle sobre a morfologia e as dimensões das partículas de SnO_2 , existem outras formas de melhorar as propriedades sensoras do SnO_2 como a dopagem, a adição de nanocatalizadores na superfície, geralmente nanopartículas de metais nobres, e também a preparação de nanocompósitos [10, 21, 34, 50, 51]. Em geral, a adição de outros elementos à nanofibra de SnO_2 melhora as propriedades sensoras principalmente por meio de dois mecanismos: pela introdução de subníveis energéticos dentro do espaçamento entre bandas de energia [52], facilitando as transições eletrônicas e levando

a um aumento da condutividade ou pela ação catalizadora do aditivo, facilitando as reações entre o oxigênio adsorvido na superfície e as moléculas do gás alvo, levando a uma maior resposta sensora [53, 54].

Assim, observa-se a realização de um grande número de estudos e pesquisas voltadas para o desenvolvimento de sistemas sensores a base de SnO_2 nos últimos anos. Desta maneira, visando revisar esses trabalhos e fazer um levantamento do estado da arte dos conhecimentos gerados nessas pesquisas, este trabalho apresenta uma revisão de literatura das pesquisas publicadas nos últimos anos referentes à síntese de nanofibras de SnO_2 utilizando eletrofiação e o seu uso no sensoriamento de gases. Os principais tópicos discutidos envolverão: uma abordagem sobre a técnica de eletrofiação e a obtenção de materiais nanofibrosos de SnO_2 utilizando a eletrofiação recentemente; uma discussão sobre o mecanismo de detecção de gases pelo SnO_2 ; e o desenvolvimento de sensores de nanofibras sólidas e oca de SnO_2 .

Eletrofiação

A eletrofiação é um processo de produção de micro e nanofibras uniformes e longas de vários materiais poliméricos e cerâmicos [42, 49]. Por meio deste método fibras com diferentes morfologias podem ser obtidas através do controle das condições do processo [42]. Assim, podem ser obtidas, por exemplo, fibras porosas [55, 56], multicanais [37, 38, 57], core-shell [58], na forma de fitas [59], hierárquicas [60-62], tubulares [9, 63], entre outras. As fibras produzidas, além de possuírem pequeno diâmetro (Tabela I), apresentam área superficial elevada (dezenas a centenas de m²/g), alta porosidade e tamanho de poros pequenos [64]. A Tabela I apresenta a morfologia de fibras de SnO₂ e compósitos SnO₂-óxido cerâmico obtidas por eletrofiação e os respectivos diâmetros médios.

A Figura I apresenta um esquema típico do processo de fiação por eletrofiação, o qual contém basicamente uma seringa com a solução, uma fonte de alta tensão e um coletor aterrado. Durante a formação de fibras por eletrofiação, uma solução polimérica ou híbrida (polimérica/cerâmica) mantida em um tubo capilar por meio de sua própria tensão superficial é eletricamente carregada e estirada (elongada) pela força de um campo elétrico aplicado [65, 66]. Quanto maior a intensidade desse campo, maior é a intensidade do estiramento [49]. Devido ao carregamento, na extremidade do bico de fiação forma-se uma gota com formato cônico [67], denominada de cone de Taylor. Quando a força do campo elétrico supera a tensão superficial da solução polimérica, um jato é expelido do cone e, dada a interação intensa entre esse jato e o campo elétrico, sofre estiramento [49, 65, 68]. Durante o estiramento, o solvente evapora formando um fibra eletricamente carregada que pode ser coletada em uma placa metálica [65].

Nanofibras ocas multicanais

Nanofibras sólidas porosas

Nanofibras sólidas

nanopartículas de PtO₂ SnO2 dopado com Rh

nanopartículas de PtO

SnO₂ funcionalizadas com

Material	Morfologia	Diâmetro (nm)	Referências	
SnO ₂ dopado com Pt	Nanofibras sólidas rugosas; orientação aleatória	~120		
SnO ₂ puro	Nanofibras ocas	~300	[166]	
SnO ₂ puro	Nanofibras sólidas e rugosas, composta de inúmeros nanogrãos; orientação aleatória	~150	[2]	
SnO ₂	Micro e nanofibras ocas	400-750	[76]	
SnO ₂ dopado com Co	Nanofibras sólidas e rugosas aleatoriamente orientadas	120-200	[102]	
SnO ₂ dopado com Ce	Nanofibras ocas rugosas	~158-234	[149]	
SnO ₂	Nanofibras ocas e rugosas; não alinhadas	80-100	[56]	
SnO ₂	Nanofibras ocas, rugosas e bem alinhadas (orientadas)	80-400	[9]	
SnO ₂ dopado com Ni	Nanofibras ocas	150-250	[78]	
SnO ₂ dopado com Y	Nanofibras ocas e porosas	150-200	[147]	
SnO ₂	Nanofibras ocas porosas	~200	[146]	
SnO_2 dopado com V_2O_5	Nanofibras sólidas porosas, composta de inúmeros nanogrãos; orientação aleatória	80	[112]	
SnO_2 dopado com Sr	Nanofibras sólidas porosas	110 ± 10	[103]	
SnO ₂ funcionalizado por nanopartículas de Pd	cionalizado por culas de Pd Nanofibras ocas orinetadas aleatoriamente		[74]	
Nanocompósito ZnO-SnO ₂	Nanofibras ocas porosa e rugosas	~150	[151]	
SnO ₂ dopado com Yb	Nanofibras ocas rugosas	200-320	[34]	
Nanocompósito TiO ₂ -SnO ₂	Nanofibras ocas hierárquicas com elevada porosidade e rugosidade superficial	~450	[61]	
SnO ₂	Nanofibras ocas hierárquicas contruídas a partir estruturas na forma de ramos de 20-40 nm de diâmetro	<500	[62]	
SnO2 dopado com Eu	Nanofibras sólidas não orientadas e rugosas	100-113	[32]	
SnO ₂ dopado com Co	Nanofibras sólidas porosas compostas de inúmeras nanopartículas	~100	[100]	
Nanocompósito SiO ₂ -SnO ₂	Nanofibras core-shell orientadas aleatoriamente e com superficie rugosa	160-320	[150]	
SnO ₂ dopado com Ca e Au	Nanofibras sólidas	112-135	[167]	
SnO ₂ dopado com Ni	Nanofibras sólidas bem alinhadas	~200	[104]	
SnO ₂	Nanofibras ocas com rugosidade superificial	80-100	[63]	
SnO ₂ modificado com CuO	Nanofibras ocas rugosas	~200	[111]	
SnO ₂ funcionalizado com	N	200,400	[57]	

300-400

~150

100-150

[57]

[33]

[107]

Tabela I - Morfologia e diâmetros médios de nanofibras de SnO2 e compósitos SnO2-óxido cerâmico sintetizadas pelo processo de eletrofiação.

Figura I - Esquema típico do procedimento de preparação de fibras por eletrofiação. Adaptada de Abideen, Kim [80].

A morfologia das fibras eletrofiadas pode ser ajustada por meio de mudanças nos parâmetros de fiação. Estes parâmetros podem ser classificados em três categorias: (1) propriedades da solução, tais como concentração, viscosidade, condutividade e tensão superficial); (2) parâmetros do processo, como por exemplo voltagem, taxa de fluxo e distância de trabalho (distância entre a ponta do bico de fiação e o coletor); (3) condições ambientais, como temperatura e umidade do ar [49]. A influência de alguns dos parâmetros da eletrofiação na morfologia das fibras são apresentados na Tabela II.

Combinada a elevada área superficial, nanofibras apresentam uma morfologia direcional que facilita o transporte dos portadores de carga e ainda faz com que toda a matriz do material entre em contato mais rapidamente com as moléculas gasosas [9, 69]. Ademais, nanofibras ocas e coreshell proporcionam aumento da área superficial do sistema nanoestruturado da nanofibras tradicionais [70, 71]. Assim, vem ocorrendo um grande interesse em fabricar sensores a partir de nanofibras ocas e core-shell.

Tabela II - Influência dos principais parâmetros da eletrofiação na morfologia das fibras [9, 49, 65, 168, 169].

Parâmetros		Influência
Propriedades da solução	Concentração	Diâmetro da fibra aumenta com o aumento da concentração polimérica; influencia na formação das fibras (concentração muito alta provoca a formação de poucas fibras e baixa demais prova a quebra do fluxo da solução)
	Viscosidade	Aumento na viscosidade leva ao aumento no diâmetro das fibras; aumento da viscosidade diminui a concentração de <i>beads</i> (estruturas arredondadas que se formam de forma espaçada na fibra, como contas de um colar de pérolas)
	Peso molecular	Altos pesos moleculares levam a fibras com morfologia uniforme; soluções mais viscosas são facilmente obtidas
	Índice de polidispersividade	Para polímeros com baixos índices de polidispersividade, uma faixa estreita de distribuição de diâmetros das fibras é obtido
	Condutividade	Aumento da condutividade da solução leva a maior estiramento do jato e diminuição do diâmetro das fibras
Parâmetros de Processo	Voltagem	Diminuição do diâmetro das fibras com o aumento da voltagem e formação de defeitos superficiais ; redução do tamanho de beads com aumento da voltagem
	Taxa de fluxo	Baixas taxas de fluxo levam a fibras com menores diâmetros; altas taxas de fluxo levam a fibras com maiores diâmetros ou fibras com evaporação incompleta no coletor
	Tipo de coletor	Por meio da mudança no tipo de coletor (placas, giratórios, em tambor, etc.) fibras alinhadas, aleatórias, fios e redes de fibras podem ser obtidas
	Tipo de bico	Fibras sólidas e ocas podem ser obtidas
	Distância de trabalho	Distâncias de trabalho pequenas levam a incompleta evaporação dos solventes e as fibras tendem a ficar coladas no coletor e entre si
Condições ambientais	Temperatura	Aumento da temperatura resulta em diminuição do diâmetro das fibras
	Umidade do ar	Elevada umidade do ar leva à formação de poros nas fibras

O aparato de fiação mostrado na Figura I pode ser empregado na obtenção de nanofibras sólidas e ocas, uniformes e com pequenos diâmetros. A preparação de nanofibras ocas utilizando este aparato, sem nenhuma modificação, ocorre pela utilização de dois polímeros imiscíceis para provocar a separação de fases [9, 34, 39]. Um mecanismo de formação de nanofibras ocas foi proposto por Ab Kadir, Li [9] e é mostrado na Figura II. No trabalho de Ab Kadir, Li [9], devido a imiscibilidade e incompatibilidade entre os polímeros PVP e PAN, durante o processo de eletrofiação, ocorre uma separação de fases e as moléculas de PAN (em vermelho no esquema) ocupam o centro da nanofibra, enquanto que o híbrido PVP/SnCl₂ forma uma camada ao redor do PAN [9, 72]. Após a calcinação, os polímeros PAN e PVP são eliminados, enquanto que o SnCl₂ é oxidado e convertido em SnO₂ e assim nanofibras com morfologia tubular são formadas [9].

Figura II - Diagrama ilustrativo do mecanismo de formação de nanofibras ocas de SnO2 por eletrofiação usando soluções de PVP e PAN. Adaptado de Ab Kadir, Li [9].

A formação de nanoestruturas ocas pode ocorrer sem a necessidade da adição/uso de polímeros imiscíveis. Foi verificado que o processo de formação de estruturas ocas se deve, principalmente, a dois fatores principais que ocorrem simultaneamente: a evaporação do solvente e a separação de fases. E essa separação de fases pode ocorrer sem a presença de um polímero adicional. Neste processo, os solventes presentes na superfície evaporam rapidamente e existe uma difusividade de solventes do centro para a superfície, o que gera um gradiente de concentração ao longo do raio da nanoestrutura. Com a difusão do solvente, existe um arraste de íons Sn²⁺ e de moléculas de polímero do centro da nanoestrutura para a superfície. Como os íons Sn²⁺ são mais leves que as moléculas de polímero, o Sn²⁺ difunde mais rapidamente e tendem a se alocar na superfície da nanoestrutura, enquanto que o polímero tende a ocupar o centro da mesma [28, 73]. Usando essa sistemática, estudos [56, 74, 75] obtiveram nanofibras de SnO₂ com estruturas tubulares utilizando apenas PVP, o precursor de Sn, e uma mistura dos solventes dimetilformamida (DMF) e etanol durante o processo de fiação.

As nanofibras core-shell são preparadas através da técnica de eletrofiação coaxial, a qual consiste na alimentação simultânea de duas soluções diferentes por meio do uso de dois tubos capilares coaxiais para formar nanofibras compostas de um núcleo (*core*) e um invólucro ou revestimento (*shell*) [64, 76]. A Figura III ilustra um esquema do processo de eletrofiação coaxial. Como pode ser visto, o aparato é similar ao de eletrofiação tradicional, diferindo daquele pela presença de dois tubos concêntricos para manter os fluidos do núcleo e da camada externa separados. Esses fluidos são alimentados separadamente usando seringas individuais [77]. A formação da fase desejada é conseguida através da calcinação, que remove a parte interior (núcleo) e extrai solventes residuais, produzindo no processo estruturas com morfologia tubular [9, 78]. Mais capilares podem ser

adicionados a esse esquema, formando, por exemplo a uma estrutura *core-shell* com três camadas (estrutura multi-camadas) [79].

Figura III - Esquema ilustrativo da montagem do equipamento para eletrofiação coaxial para a obtenção de nanofibras do tipo core-shell. Adaptado de Chang, Xu [77].

3. Mecanismo de detecção de gases do SnO₂

Os sensores baseados em óxidos metálicos, como o SnO₂, sofrem mudanças na resistência ou condutância elétrica quando interagem com as moléculas gasosas [80]. O mecanismo de detecção de gases se baseia nessa mudança de condutividade elétrica ou resistência, a qual é o resultado de reações químicas que ocorrem entre as moléculas do gás alvo e íons de oxigênio adsorvidos na superfície do SnO₂ [80-82]. Quando sensores de SnO₂ são expostos ao ar atmosférico, o oxigênio se ioniza e adere à superfície do sensor capturando elétrons da banda de condução do SnO₂ e formando espécies quimicamente adsorvidas de oxigênio O_2^- e O^- , dependendo da temperatura [9, 82-84]. A formação destas espécies reativas de oxigênio e a consequente extração de elétrons ocorre de acordo com as equações [9, 81, 82]

$O_2(g) \Rightarrow O_2(ads)$	(1)
$O_2(g) \Rightarrow O_2(aas)$	(1)

$$2O_2(ads) + e^- \Rightarrow 2O_2^-(ads)$$
 (2)

$$O_2^-(ads) + e^- \Rightarrow 20^-(ads)$$
(3)

$$0^{-}(ads) + e^{-} \Longrightarrow 0^{2^{-}}(ads) \tag{4}$$

Em temperaturas abaixo de 150 °C, o oxigênio adsorve preferencialmente na forma O_2^- (Eq. 2), enquanto que acima de 150 °C o oxigênio adsorvido se transforma em ambos os íons O^{2-} e O^- (Eqs. 3 e 4) simultaneamente [11]. O oxigênio adsorvido na superfície do SnO₂, agindo como receptor de elétrons, causa a depleção dos estados eletrônicos da superfície e reduzem a densidade de portadores de carga, resultando em uma região de depleção eletrônica [82] e, em consequência, aumenta a resistência do sensor.

A presença de outros gases com propriedades redutoras ou oxidantes irá afetar a densidade de portadores de carga na região entre cada contorno de grão do SnO_2 [85]. Gases redutores, como H₂S, CO e etanol, irão reagir com íons de oxigênio adsorvidos à superfície, extraindo-os, num processo que libera os elétrons de volta para a banda de condução do material e aumenta a condutividade [81, 82]. Por outro lado, gases oxidantes, como o NO₂ e CO₂, irão capturar ainda mais elétrons da banda de condução e criar estados receptores de elétrons adicionais [6, 86]. Como resultado, gases redutores provocam a diminuição da espessura da camada de depleção eletrônica, enquanto que gases oxidantes causam o aumento da espessura dessa camada, resultando em aumento ou diminuição da quantidade de elétrons livres disponíveis, ou seja, aumentando ou diminuindo a condutividade [80, 84, 87, 88]. Um diagrama esquemático deste mecanismo pode ser visto na Figura IV.

Figura IV - Diagrama esquemático do mecanismo de sensoriamento do SnO₂ na presença de gases oxidantes e redutores. Adaptado de Abideen, Kim [80].

A adsorção de moléculas de O_2 na superfície do SnO_2 está diretamente associada à presença de vacâncias de oxigênio. Essas vacâncias participam diretamente das reações catalíticas entre o gás e o SnO_2 e atuam principalmente como sítios ativos onde o O_2 pode adsorver [9, 89]. De uma forma geral, a presença e quantidade de vacâncias na superfície do SnO_2 são determinantes para a melhora das propriedades sensoras deste material [90, 91].

Além da presença de vacâncias, outros fatores afetam a condutividade e, consequentemente, as propriedades sensoras do SnO₂, como por exemplo o tamanho de grão. Uma baixa sensibilidade é esperada se o tamanho de grão (*D*) é muito grande, ou seja, quando o tamanho de grão é maior do que o comprimento de Debye (L_D) [80]. Neste caso, a mobilidade interna dos portadores de carga e a condutividade elétrica dependem da altura da barreira potencial (camada de depleção eletrônica) entre grãos [92] e não há contribuição da região interna dos grãos. O comprimento de Debye tipicamente varia de 2 a 100 nm e é dado pela equação [93]

$$L_{D} = \left(\frac{\epsilon\epsilon_{0}kT}{e^{2}n_{b}}\right)^{1/2}$$
(5)

nesta expressão, ϵ representa a constante dielétrica, ϵ_0 é a permissividade no vácuo, k é a constante de Boltzmann, T é a temperatura, ϵ é a carga elementar e n_b é a concentração de elétrons no material.

Uma elevada resposta sensora é esperada quando $D \leq L_D$; neste caso, todos os grãos ficam empobrecidos de portadores de carga e, assim, a camada de carga espacial, domina todo o material, consequentemente, as reações superficiais afetam todo o material [94]. Neste caso, não há barreiras significativas ao transporte de cargas intercristalito. A condutividade é essencialmente controlada pela condutividade intercristalina e uma pequena quantidade de cargas adquiridas de reações superficiais é necessária para

causar grandes mudanças de condutividade ao longo de toda a estrutura [95]. Desta forma, o SnO_2 nanoestruturado se torna altamente sensível a moléculas do gás ambiente quando o tamanho de partículas é pequeno.

No caso de nanofibras, os tamanhos dos nanogrãos são usualmente menores do que o comprimento de Debye e a morfologia direcional destas estruturas possibilita um maior contato com as moléculas do gás a ser detectado. Isto leva a um aumento das interações com o semicondutor, o que, em suma, é muito vantajoso para o desenvolvimento de sensores mais eficientes [80].

4. Sensores de nanofibras de SnO₂

Como enfatizado por Chen, Xue [96], o tamanho e a morfologia dos materiais afetam fortemente suas propriedades e, consequentemente, as suas aplicações. Neste caso, se faz necessário obter um maior controle sobre estes parâmetros, o que geralmente é feito por meio do ajuste das condições da rota de síntese. No caso de nanoestruturas 1D de SnO₂, como as nanofibras, uma elevada razão área/volume promove mais sítios ativos para os processos de adsorção e dessorção de moléculas gasosas durante a detecção de gases [89]. Outro aspecto que é responsável por proporcionar elevadas respostas sensoras em nanoestruturas 1D é o fato de que o diâmetro destes materiais é, geralmente, comparável ao comprimento de Debye, o que significa que todo o material pode ser influenciado pelas moléculas gasosas adsorvidas [9].

Nanoestruturas de SnO_2 altamente porosas e/ou ocas também proporcionam uma melhora na resposta sensora a gases. Isto ocorre porque estes materiais apresentam área superficial mais elevada do que materiais com morfologia não porosa ou oca e, assim, oferecem maior possibilidade de interação entre as moléculas gasosas de O_2 e a superfície do SnO_2 e entre os íons de O_2 adsorvidos e as moléculas do gás alvo, além de possibilitarem uma maior difusividade de moléculas gasosas por entre os poros e canais [9, 25, 27, 34, 39, 55, 63, 70, 81].

Outra forma de melhorar as propriedades sensoras de nanoestruturas de SnO₂ é a dopagem. Em geral, a dopagem com um elemento metálico aumenta as propriedades sensoras do SnO₂ pelas seguintes razões: (1) produção de vacâncias de oxigênio e, consequentemente, de portadores de carga [31, 97, 98] e (2) diminuição do tamanho dos grãos [99, 100]. Como enfatizado, uma maior quantidade de vacâncias de oxigênio leva a uma maior reatividade superficial e também essas vacâncias podem doar elétrons para a banda de condução [101]. Por outro lado, menores tamanhos de grão levam a maiores áreas superfíciais e maior quantidade de ligações insatisfeitas na superfície, ou seja, maior quantidade de vacâncias de O2. Além do mais, grãos menores que o comprimento de Debye proporcionam uma maior condutividade e maior interação entre as moléculas gasosas e o material [9].

4.1 Sensores de nanofibras SnO₂

Diferentemente de outros óxidos metálicos, como o TiO₂, que aumenta sua condutividade pela formação de vacâncias de O₂ em todo o volume do material em atmosferas redutoras e se enquadram como materiais sensores volumétricos, o SnO₂ pertence à categoria dos sensores que apresentam sensibilidade a gases somente na superfície, já que as reações catalíticas entre os gases e o SnO₂ ocorrem preferencialmente na superfície [87]. Desta forma, as propriedades sensoras do SnO₂ dependem da área superficial total disponível para as reações com gases presentes na atmosfera e uma elevada área superficial usualmente implica em maior resposta sensora [19, 39, 57]. Portanto, na preparação de nanofibras de SnO_2 para aplicação em sensores, esforços consideráveis são feitos para produzir morfologias com elevada área superficial.

4.1.1 Sensores de nanofibras não tubulares

Para preparar nanofibras com larga área superficial usualmente se recorre à métodos de obtenção de morfologias tubulares, multicanais ou ao aumento da porosidade superficial. Muito embora a grande maioria das pesquisas reportem a preparação de nanoestruturas ocas, muitos estudos relatam a preparação de sensores bastante eficientes na detecção de diversos tipos de gases a partir de nanofibras não ocas. Geralmente, para melhorar a capacidade de sensoriamento destas nanoestruturas se recorre a processos que aumentem a porosidade superficial [62], à dopagem [33, 102-104], à formação de nanocompósitos [105] e/ou a funcionalização destas estruturas com elementos metálicos nobres, como platina (Pt) [106-108], ouro (Au) [109], paládio (Pd) [110], entre outros.

Com base nisso, diversas pesquisas relataram a síntese de nanofibras sólidas de SnO_2 puras e modificadas com os mais diversos aditivos por eletrofiação para aplicação em sensores de gás. As fibras sólidas de SnO_2 obtidas por esta técnica apresentam uma estreita faixa de diâmetros, como é mostrado na Tabela III. Como se vê, os diâmetros das fibras sólidas calcinadas de SnO_2 obtidas nos sestudos recentes variam de 30 nm até ~250 nm. Fibras com diâmetros pequenos são importantes porque apresentam maior relação área/volume, a qual tem grande influência na resposta sensora.

Material	Diâmetro das fibras não calcinadas (nm)	Diâmetro das fibras após a calcinação (nm)	Referências	
Al-SnO ₂	-	80-120	[170]	
CuO-SnO ₂	~120	~70	[141]	
CuO-SnO ₂	~110	~90	[143]	
Pt/SnO ₂	235 ± 40	210 ± 35	[145]	
V-SnO ₂	~160	~80	[112]	
SnO_2	-	100-120	[1]	
Sr-SnO ₂	-	~110	[103]	
SnO_2	-	80-100	[104]	
ZnO/SnO ₂	-	50-80	[124]	
CuO-SnO ₂	~200	~130	[144]	
Eu-SnO ₂	-	100-113	[32]	
Co-SnO ₂	-	~100	[100]	
Ca/Au-SnO ₂	-	30-180	[167]	
Ni-SnO ₂	-	~200	[104]	
Rh-SnO ₂	-	~150	[33]	
PtO/SnO ₂	-	100-150	[107]	

Tabela III - Diâmetros de fibras sólidas de SnO₂ puro e modificado com aditivos e obtidos por eletrofiação.

Chen, Zhou [102] prepararam nanofibras de SnO_2 dopadas com cobalto (Co) pelo método de eletrofiação e compararam a resposta sensora ao gás metano (CH₄) dessas nanofibras à resposta obtida usando sensores preparados a partir de nanoesferas de SnO_2 , também dopadas com 3 at.% de Co. A Figura V mostra imagens de microscopia eletrônica de transmissão (MET) das nanoestruturas preparadas. As nanoesferas apresentaram diâmetro médio de ~500 nm, enquanto que as nanofibras preparadas apresentaram diâmetros entre 120 e 200 nm.

A Figura VI apresenta os resultados de sensoriamento a 50 ppm do gás metano em diferentes temperaturas de operação para os sensores preparados a partir de nanofibras e nanoesferas de SnO_2 dopadas com 3 at.% de cobalto. A máxima resposta, para os dois sensores, é obtida na temperatura de 300 °C. As respostas a essa temperatura foram de 30,28 e 11,59 para os sensores de nanofibras e de nanoesferas, respectivamente. Comparado às nanoesferas, as nanofibras de SnO_2 possuem uma maior relação área/volume, promovendo uma maior quantidade de sítios reativos para a adsorção das moléculas do gás alvo [102]. Assim, uma maior resposta sensora era esperada para os sensores obtidos a partir das nanofibras.

Figura V - Imagens de MET de nanofibras (a) e nanoesferas (b) de SnO₂ dopadas com 3at.% Co. Adaptado de Chen, Zhou [102].

Figura VI - Resposta dos sensores obtidos a partir de nanofibras e nanoesferas de SnO_2 dopadas com 3 at.% de Co a 50 ppm do gás CH₄ em diferentes temperaturas de operação. Adaptado de Chen, Zhou [102].

Contudo, os autores não forneceram explicações para o papel do cobalto no processo de sensoriamento. Segundo Kou, Wang [100], que prepararam sensores de etanol a partir de nanofibras de SnO_2 não dopadas e dopadas com concentrações de cobalto entre 1 e 5 mol.%, a dopagem com Co suprime o crescimento dos grãos de SnO_2 , resultando em uma maior quantidade de sítios sensitivos nos contornos de grão expostos ao gás alvo e isto se torna vantajoso para propriedades sensoras do SnO_2 . A dopagem com cobalto também levou a uma maior concentração de vacâncias de O_2 que, por sua vez, são responsáveis por capturar elétrons da banda de condução dos estados superficiais do SnO_2 . Isto tem efeito significativo na resposta de sensores de SnO_2 , uma vez que, com a exposição a um gás redutor, esses elétrons são liberados rapidamente [9] e um sinal elevado é gerado.

Uma diminuição nos tamanhos dos cristalitos também foi observada por Feng, Li [112] para nanofibras de SnO₂ dopadas com V₂O₅. Essas fibras, preparadas por eletrofiação, apresentaram diâmetros na faixa de 60 a 160 nm e elevada rugosidade superficial, como pode ser evidenciado na Figura VII, que mostra uma típica imagem de MEV das fibras obtidas. A rugosidade superficial promove elevadas áreas superificiais, que são importantes em sensores de gás. As áreas superficiais das fibras dopadas com 0,5 mol%, 1 mol%, 2,5 mol% e 5 mol% de V_2O_5 , determinadas por BET, foram de 50,3 m².g⁻¹, 53,2 m².g⁻¹, 60,3 m².g⁻¹ e 78,3 m².g⁻¹, respectivamente. O pequeno diâmetro dessas fibras aliado a alta rugosidade superficial e à presença do dopante justificam a melhora da resposta sensora ao benzeno. O V2O5 age como um catalizador da reação entre as moléculas de benzeno e os íons de O2 adsorvidos na superfície do SnO2, liberando elétrons de volta para a banda de condução e, levando a uma diminuição da resistência elétrica [112].

Figura VII - ¬Nanofibras de SnO₂ não dopadas (a) e dopadas com 1 mol% de V₂O₅. Resposta dos sensores de nanofibras de SnO₂ não dopadas e dopadas com 1 mol% V₂O₅ ao benzeno na temperatura de operação de 325 °C. Adaptada de Feng, Li [112].

Outro dopante que tem bastante influência na condutividade de nanofibras de SnO2 e, consequentemente, nas propriedades sensoras deste material é o estrôncio (Sr). Jiang, Jiang [103] prepararam sensores de etanol a partir de nanofibras dopadas e não dopadas com diferentes percentagens atômicas de Sr (1, 2, 3 e 4 at.%). Dentre estas composições, os autores compararam a resposta sensora das nanofibras não dopadas e dopados com 1 at.% de Sr e, estas últimas apresentaram resposta sensora superior às primeiras na temperatura otimizada de operação de 260 °C. A melhora na resposta sensora ao vapor de etanol pela dopagem com Sr foi associada a dois fatores: (1) inibição do crescimento dos grãos de SnO₂ em virtude da diferença entre os raios dos íons Sn^{4+} (69 pm) do material hospedeiro e o Sr^{2+} (112 pm), que proporciona uma maior área superficial em virtude de se ter grãos menores. Essa diminuição é provocada pela restrição do movimento de cristalitos pela interação entre os contornos dos cristalitos do material hospedeiro e do dopante [92, 113]. (2) desidratação do etanol na superfície do SnO2 modificada por óxidos básicos [95, 114, 115]. Essa desidratação ocorre de acordo com a equação:

$$C_2H_5OH \rightarrow CH_3CHO + H_2$$
 (6)

e é provocada pela presença do óxido básico SrO, que leva a superfície do SnO₂ a se tornar básica [103].

A dopagem com níquel (Ni) tem se mostrado um dos meios mais eficazes de melhorar as propriedades sensoras do SnO_2 . O Ni^{2+} promove a quimiossorção de gases oxidantes, como o NO_2 , na superfície do SnO_2 [116] e, devido ao seu raio iônico (0,069 nm) semelhante ao do Sn^{4+} (0,071 nm), o dopante Ni^{2+} tende a substituir as posições de rede do Sn^{4+} [117, 118], o que leva a um aumento da concentração de vacâncias de oxigênio, de acordo com a equação [104]

$$Ni_{Ni} + O_0 \xrightarrow{SnO_2} Ni_{5n}'' + V_0^{\bullet\bullet} + 1/2 O_2 \uparrow$$
(7)

Vacâncias de oxigênio são, normalmente, sítios ativos aonde reações acontecem na superfície [119, 120] e, assim, a adsorção e a ionização do oxigênio na superfície do SnO₂ é facilitada pela dopagem com Ni. Portanto, a dopagem do SnO₂ com Ni proporciona melhores respostas sensoras. Diante disto, vários trabalhos relatam a síntese de nanofibras de SnO₂ dopadas com níquel ou de nanocompósitos fibrosos NiO-SnO₂ para aplicação em sensores de gás [75, 97, 104, 121]. Pascariu, Airinei [75] reportaram a preparação de nanofibras porosas de NiO-SnO₂ com diferentes teores (3,73, 6,46 e 9,15 at.%) de NiO para aplicação em sensores de umidade. Os autores verificaram um efeito pronunciado da umidade relativa do ar nas propriedades elétricas das nanofibras produzidas. De fato, houve um aumento da condutividade elétrica dos sensores (diminuição da resistividade, p) com o aumento da umidade do ar, como é indicado na Figura VIII (a). Na Figura VIII (b) observa-se um aumento da resposta sensora com o aumento da concentração de NiO e também com o aumento da umidade relativa.

Figura VIII – (a) Resistividade das nanofibras dopadas com NiO e (b) Resposta sensora em função da umidade relativa do ar para nanofibras dopadas com NiO. Adaptada de Pascariu, Airinei [75].

Nanofibras eletrofiadas de SnO_2 dopadas com 8 mol.% de Ni e com diâmetros médios de ~200 nm foram preparadas por Li, Zhang [104]. Como mostra a Figura IX, as fibras apresentam-se bem alinhadas, com porosidade superficial e são constituídas por múltiplos grãos com diâmetros de ~10 nm. Testes com os sensores obtidos a partir destas nanofibras foram conduzidos, nas mesmas condições de temperatura e concentração gasosa, para os gases NO, SO₂, H₂S e CO

(Figura IX (d)). Os sensores apresentaram excelente resposta sensora a uma concentração baixa do gás NO_2 , a qual foi muito mais elevada que a resposta aos outros gases testados.

Assim, as nanofibras dopadas com Ni mostraram não somente boa sensibilidade ao gás NO₂, como também se mostraram seletivas para este gás.

Figura IX - Imagens de MEV das nanofibras de Ni-SnO₂ com baixa magnificação (a), e altas magnificações (b) e (c). Em (d) tem-se as respostas sensoras para diversos tipos de gases à temperatura de 250 °C. Adaptada de Li, Zhang [104].

Um mecanismo foi proposto pelos autores para o sensoriamento do gás NO_2 usando sensores de nanofibras de SnO_2 dopadas com Ni (Figura X). Conforme este mecanismo, inicialmente, as moléculas de oxigênio do ar adsorvem na superfície das nanofibras de Ni-SnO₂ e extraem elétrons da banda de condução do SnO₂, formando uma camada de depleção de elétrons perto da superfície e entre grãos adjacentes [80] (ver secção 3). Na temperatura entre 250 °C e 400 °C, as espécies iônicas de oxigênio adsorvem preferencialmente na forma 0^- , o qual se forma de acordo com a equação [122, 123]

$$O_2(gas) + 2e^- \rightarrow 20^-(ads)$$
 (8)

As moléculas do gás NO₂, que é um gás de forte caráter oxidante, interagem e adsorvem na superfície das nanofibras e capturando elétrons da mesma forma que o oxigênio. Este processo aumenta ainda mais a largura da camada de depleção eletrônica, como evidenciado no diagrama da Figura X, e aumenta a resistência do sensor. Também pode ocorrer reação entre os íons de oxigênio adsorvidos e o gás NO₂. Isto ocorre de acordo com as reações

$$NO_2(gas) + e^- \rightarrow NO_2^-(ads)$$
 (9)

$$NO_2(gas) + 20^- \rightarrow NO_2^-(ads) + O_2(gas) + e^-$$
 (10)

O NO₂ também irá reagir com grupos hidroxila adsorvidos na superfície do SnO₂ para formar NO_3^- e NO_2^- :

$$2NO_2(gas) + 20H^{-}(ads) \rightarrow NO_3^{-}(ads) + NO_2^{-}(ads) + H_2O(gas)$$
 (11)

Destas reações, a reação 9 ocorre com menos intensidade que as demais devido a grande quimiossorção de moléculas do gás NO_2 e também a maior abundância de íons OH^- em relação aos íons O^- . Assim, um grande aumento da resistência dos sensores é esperado durante a interação destes com o gás NO_2 , resultando em uma alta resposta sensora.

A preparação de nanofibras de compósitos SnO_2 -ZnO por eletrofiação para aplicação em sensores de gás tem recebido bastante atenção. Katoch, Kim [105] obtiveram nanofibras de SnO_2 -ZnO com elevada sensibilidade ao gás H₂. Segundo esses autores (Figura XI) com o aumento da fração molar de ZnO na faixa de 0,01 a 0,10 existe um aumento da resposta sensora ao gás H₂ na temperatura de operação de 300 °C. Todavia, para frações molares mais elevadas de ZnO, a resposta sensora começa a diminuir. Também pode ser observado que os sensores com razão molar de ZnO de 0,10 apresentam excelente resposta sensora para baixas concentrações de H₂, na faixa de 0,1 a 10 ppm, o que indica que o ZnO pode ser utilizado para otimizar a performance de sensores deste gás fabricados a partir do SnO_2 .

Figura X - Diagrama esquemático do mecanismo de detecção do gás NO₂ usando sensores de nanofibras de Ni-SnO₂. Adaptado de Li, Zhang [104].

Figura XI - Resposta dos sensores das nanofibras do compósito SnO₂-ZnO a diversas concentrações de H₂ na temperatura de operação de 300 °C. Adaptado de Katoch, Kim [105].

Um mecanismo de sensoriamento bifuncional foi proposto pelos autores para explicar a melhora na performance de sensoriamento de nanofibras de SnO_2 ao gás H_2 pela introdução do ZnO. Este mecanismo inclui o seguinte: (1) efeito do gás redutor entre nanogrãos de SnO_2 adjacentes e (2) efeito da formação de Zn metálico entre nanogrãos de SnO_2 e ZnO. O primeiro mecanismo (m₁) consiste no fenômeno da condutividade dependente dos contornos de grãos [92, 94] exibido por homojunções SnO_2 - SnO_2 , como é mostrado na Figura XII. Neste caso, similarmente ao que ocorre em nanofibras de SnO_2 puro, muitas homojunções SnO_2 -SnO_2 existem entre dois nanogrãos adjacentes nos nanocompósitos fibrosos. Quando expostos ao ar, as moléculas de O_2 difundem através dos nanogrãos e extraem elétrons dos nanogrãos, formando barreiras potenciais entre nanogrãos adjacentes, o que restringe o fluxo de elétrons entre os nanogrãos. Durante a exposição ao gás H₂, as moléculas de H₂ interagem com espécies iônicas de O₂ adsorvidas quimicamente, levando à liberação de elétrons com a concomitante formação de H₂O. Os elétrons assim liberados para os nanogrãos de SnO_2 reduzem a altura da barreira potencial estabelecida entre os contornos de grão, resultando em uma queda na resistência elétrica nas junções SnO_2 - SnO_2 .

Por outro lado, no caso dos compósitos nanofibrosos SnO₂-ZnO, barreiras potenciais são criadas entre os nanogrãos de SnO₂ e ZnO adjacentes. Muito embora a adição de ZnO ao SnO₂ tenha provocado inibição do crescimento dos grãos, a diminuição dos grãos oferece pouca contribuição para a melhora da resposta sensora quando comparada ao efeito da heterojunção formada entre grãos adjacentes de SnO₂ e ZnO [105]. Assim, a contribuição do segundo mecanismo (m₂) associado à formação de heterojunções SnO₂-ZnO (Figura XII (b)) é o principal responsável pela resposta excepcional dos compósitos nanofibrosos.

Figura XII - Diagrama esquemático do mecanismo bifuncional de detecção do gás H₂ usando nanofibras do compósito SnO₂-ZnO. (a) Mecanismo (m₁): efeito do gás redutor nas interfaces SnO₂-SnO₂ e (b) Mecanismo (m₂): efeito da metalização na interface SnO₂-ZnO. Adaptada de Katoch, Kim [105].

De acordo com este mecanismo, quando os nanogrãos n-SnO₂ entram em contato com os nanogrãos de n-ZnO a diferença entre a energia mínima necessária para remover um elétron das duas superfícies ou função de trabalho (do inglês "workfunction") resulta em um fluxo de elétrons unidirecional, levando, em última instância, ao igualamento dos níveis de Fermi dos dois materiais [124, 125]. Isto resulta no dobramento das bandas de energia nas interfaces ZnO/SnO₂. As heterojunções melhoram a performance sensora por meio da modulação da resistência (ou da concentração de portadores de carga) [126, 127]. A melhora da resposta sensora a gases das heterojunções SnO₂-ZnO pode ser explicada em função da transferência de cargas que corre facilmente nas interfaces ZnO/SnO₂ [128, 129]. Além disso, as características sensoras destas heterojunções também dependem da natureza química das espécies gasosas e das interações entre estas e a superfície. Por exemplo, o mecanismo de sensorimento de compósitos SnO₂-ZnO ao etanol envolve principalmente a decomposição e oxidação do etanol devido às propriedades catalíticas das superfícies dos grãos de SnO₂ (de caráter ácido) e de ZnO (de caráter básico) [114, 124, 130].

O segundo mecanismo (m_2) envolve principalmente a modulação adicional da resistência entre os grãos de ZnO e SnO₂, resultando na formação de Zn metálico na superfície dos grãos de ZnO na presença de H₂ (Figura XII (b)). A metalização da superfície do ZnO ocorre pela adsorção de átomos de hidrogênio nas posições do oxigênio em superfícies não polares de ZnO [131-138]. A formação do zinco metálico se dá então pela interação entre o H₂ e os oxigênios na rede do ZnO. Uma forte hibridização ocorre entre os orbitais *s* do H e os orbitais *p* do O, onde os estados energéticos O-p localizados no nível de Fermi são deslocados para níveis energéticos mais baixos. Por conta dessa forte hibridização entre os orbitais H-s e O-p, uma deslocalização de cargas ocorre entre o Zn e a ligação O – H, que passam a ocupar parcialmente os estados 4s e 3d dos átomos de Zn da superfície, levando em consequência à redução parcial do Zn²⁺ para Zn metálico. Os estados 4s e 3d do Zn metálico contribuem para a condução elétrica na superfície do ZnO [105, 133].

Foi mostrado que a presença de impurezas de H na superfície do ZnO induz esse óxido metálico a se comportar como um semicondutor do tipo n por meio da promoção de um nível doador logo abaixo da banda de condução do ZnO [131, 137]. Essa interação não ocorre com a maioria dos materiais semicondutores e, desta forma, o ZnO pode ser usado com sucesso na detecção do gás H₂ [133]. A adsorção do H nos átomos de oxigênio da superfície do ZnO e a consequente formação de Zn metálico foi comprovada por meio de cálculos de estruturas de bandas [131, 134] e, de forma geral, o átomo de H doa um elétron para o ZnO e forma fortes ligações O – H [133]. Por outro lado, o gás H₂ interage mais fortemente com as espécies iônicas de oxigênio adsorvidas na superfície do SnO₂ e somente em altas temperaturas (450 °C) foi observada a formação de Sn metálico na presença do gás H₂, num processo dependente do tamanho dos grãos (quanto menor o tamanho dos grãos maior é a formação de Sn metálico) [139]. Assim, a conversão parcial do óxido metálico no metal base ocorre mais facilmente para o ZnO do que para o SnO₂.

Desta forma, com a exposição ao gás H_2 , a transformação de semicondutor para metal ocorre na superfície do ZnO. Com isso, a heterojunção entre o ZnO e o SnO₂ é destruída e passa a existir um transporte acelerado de elétrons do Zn metálico para a superfície do SnO₂. Isto reduz a resistência do sensor. Quando o gás H_2 é removido e ar é fornecido, o Zn metálico é oxidado para formar ZnO novamente, desta forma estabelecendo a configuração de bandas original. Portanto, as transições semicondutor-metal na superfície do ZnO possibilitam um significativo ajuste da resistência de nanocompósitos SnO₂-ZnO e, consequentemente, melhoram a resposta sensora [105].

Outros trabalhos na literatura relatam a síntese de nanofibras de compósitos SnO2-ZnO para aplicação em sensores de gases. Yan, Ma [124] sintetizaram nanofibras heteroestruturadas SnO₂-ZnO de e aplicaram no sensoriamento de etanol. As nanofibras de SnO2-ZnO apresentaram resposta sensora muito superior a de nanofibras de ZnO e de SnO₂ isoladas na mesma temperatura de operação (300 °C) e mesma concentração gasosa (100 ppm de etanol). Guo and Wang [125] prepararam nanocompósitos SnO₂-ZnO a partir da funcionalização de nanofibras de SnO₂ com nanoesferas de ZnO. Estes nanocompósitos foram testados no sensoriamento de etanol e mostraram excelentes respostas sensoras quando comparadas às nanofibras de SnO₂ não funcionalizadas com ZnO e às nanoesferas de ZnO. As melhores respostas sensoras a 20 ppm de etanol para os nanocompósitos SnO₂-ZnO, as nanofibras de SnO₂ e as nanoesferas de ZnO foram de 97,5, 31,2 e 49,3, respectivamente. Essas respostas foram medidas para as temperaturas de operação ótimas de cada sensor que foram 210 °C, 150 °C e 270 °C, respectivamente. Mais recentemente, Sayago, Hontañón [140] compararam a resposta sensora ao gás NO₂ de sensores obtidos a partir de nanofibras de ZnO e do compósito ZnO-SnO₂ e verificaram que os sensores de nanofibras ZnO-SnO₂ na temperatura de 300 °C do que os sensores de nanofibras de ZnO testados.

Um outro aditivo muito usado para aperfeiçoar a capacidade sensitiva de nanofibras de SnO₂ é o cobre (Cu) ou o óxido de cobre (CuO). Choi, Zhang [141] sintetizaram nanofibras de SnO₂ funcionalizadas com nanopartículas de CuO por eletrofiação e determinaram a performance sensora destas nanoestruturas ao gás H₂S. Os sensores apresentaram uma surpreendente resposta sensora de 1.98×10^4 a 10 ppm de H₂S a 300 °C. A extraordinária resposta sensora ao gás H₂S por parte dos sensores de nanofibras de SnO₂ funcionalizadas com CuO pode ser entendida em função de heterojunções p-n entre o CuO (semicondutor do tipo p) e o SnO₂ (semicondutor do tipo n) [142]. A formação dessa junção p-n leva a um aumento da resistência do sensor. No entanto, quando o sensor é exposto ao gás H₂S, CuO é parcialmente convertido em CuS, que consiste em um material com elevada condutividade elétrica. Este processo pode ser descrito pela reação [142]

$$CuO(s) + H_2S(g) \rightarrow CuS(s) + H_2O(g)$$
 (12)

Como resultado desse processo, a camada de depleção eletrônica formada na junção p-n é destruída e, semelhantemente ao mecanismo m_2 descrito acima para o Zn, um transporte de elétrons passa a existir entre CuS e o SnO₂, levando a uma diminuição da resistência elétrica do sensor. Quando o H₂S é removido e ar atmosférico é introduzido, o CuS é convertido de volta a CuO, de acordo com a equação

$$CuS(s) + 3/2 O_2(g) \rightarrow CuO(s) + SO_2(g)$$
 (13)

Por meio desta reação, a junção p-n é novamente estabelecida e a resistência é aumentada num processo reversível que é facilitado por altas temperaturas. Assim, o tempo de recuperação é acelerado por meio do uso de temperaturas de operação mais elevadas [141].

A resposta dos sensores de nanofibras de SnO_2 não funcionalizadas por CuO foi de 20, muito mais baixa do que aquela dos sensores de CuO-SnO₂. Neste caso, o mecanismo de detecção do gás H₂S envolve a reação deste gás com as espécies de O₂ adsorvidas na superfície do SnO₂, levando à liberação de elétrons de volta para a banda de condução e ao consequente aumento da condutividade. Isto ocorre de acordo com a reação 13 [11]

$$H_2S(g) + 30^{2-} \rightarrow SO_2(g) + H_2O + 6e^-$$
(14)

Em outro trabalho, Choi e colaboradores [143] reportaram respostas sensoras ao gás H_2S ainda mais elevadas usando nanocompósitos fibrosos de SnO_2 -CuO. As melhores respostas sensoras foram obtidas para os sensores de compósitos nanofibrosos com frações atômicas de 0,5 para o CuO. A resposta foi de ~3000 a 10 ppm de H_2S na temperatura de 150 °C, enquanto que para o nanocompósito 0,1CuO-0,9SnO₂, operando nas mesmas condições, a resposta foi de apenas ~25.

Bai, Guo [144] sintetizaram nanofibras do compósito SnO₂-CuO para aplicação na detecção do gás CO. A Figura XIII (a) apresenta as respostas típicas das nanofibras de CuO-SnO₂ com diversos teores de CuO a 10 ppm do gás CO e em função da temperatura de operação, obtidas neste trabalho. Como se observa, as propriedades sensoras do SnO₂ ao gás CO foi melhorada pela incorporação do CuO. A melhor resposta foi obtida para a composição contendo 30 wt% de CuO, a qual mostrou uma reposta de ~95 à temperatura de operação de 235 °C. Este valor, quando comparado ao resultado obtido para o CuO e o SnO2 puros, foi cerca de 16 e 2,5 vezes mais elevado e a temperatura de operação ótima baixou de 295 °C para 235 °C, o que possibilita uma redução da energia consumida no processo de sensoriamento do CO. A Figura XIII (b) mostra as respostas sensoras das nanofibras de SnO₂ contendo 30 wt% CuO a 100 ppm dos gases etanol, metanol, tolueno, acetona e formaldeído e a 10 ppm do gás CO na temperatura de operação de 235 °C. Como pode ser observado, a resposta do compósito 30 wt% CuO-SnO₂ a 10 ppm de CO é significativamente mais elevada do que as respostas do mesmo compósito a 100 ppm dos outros gases testados. Este resultado demonstra a elevada seletividade do sensor de nanofibras SnO2 contendo 30 wt% de CuO ao gás CO.

Figura XIII - (a) Respostas dos sensores de nanofibras de CuO, SnO₂, 10 wt% CuO-SnO₂, 30 wt% CuO-SnO₂ e 50 wt% CuO-SnO₂ em diferentes temperaturas a 10 ppm do gás CO. (b) Comparação entre as respostas do sensor de nanofibras de 30 wt% CuO-SnO₂ a 100 ppm de diferentes tipos de gases e a 10 ppm do gás CO na temperatura de operação de 235 °C. Adaptada de Bai, Guo [144].

Ao contrário do que foi observado por Choi, Katoch [143] para o sensoriamento do gás H_2S , onde a resposta sensora das fibras de SnO₂ aumentou com o aumento da fração mássica de CuO até 0,5. Bai, Guo [144] reportaram uma diminuição na resposta sensora do gás CO quando a fração de CuO passou para 0,5. Como pode ser observado na

Figura XIII (a), a resposta sensora de fibras de CuO puras é muito baixa quando comparada às fibras de SnO_2 e dos compósitos CuO-SnO₂. Desta forma, a menor resposta sensora das nanofibras do compósito contendo 50 wt% CuO pode estar associado à elevado teor de CuO no compósito, o qual tem baixa resposta sensora. Isto foi observado em outros nanocompósitos como o SnO_2/CeO_2 [50] e pela adição de NiO ao SnO_2 [78].

Uma diversidade de outros trabalhos reportaram a síntese nanofibras de SnO₂ modificadas pela adição de diversos materiais com excelentes características sensoras. Jang, Landau nanofibras de [145] sintetizaram SnO₂ funcionalizadas com nanopartículas de platina (Pt) que apresentaram capacidade de sensoriamento de baixíssimas concentrações (entre 0,125 e 2,5 ppm) dos gases H₂, NO₂, CO e SO₂. Nesse sentido, melhorias na capacidade de sensoriamento de nanofibras de SnO2 ao tolueno também foram conseguidas por meio da adição de nanopartículas de Pt [106, 108]. Katoch, Byun [109] obtiveram nanofibras de SnO₂ funcionalizadas com ouro (Au) pelo processo de eletrofiação, as quais apresentaram excelente performance sensora a 5 ppm do gás CO na temperatura de operação de 300 °C. Nanofibras de SnO₂ funcionalizadas com paládio (Pd) com elevada resposta sensora ao gás acetona foram preparadas por Tang, Wang [110]. A melhor resposta sensora foi obtida para a adição de 1,5 mol% de Pd e com o sensor operando na temperatura de 275 °C. Jiang, Zhao [32] prepararam nanofibras de SnO₂ dopadas com európio (Eu) e aplicaram no sensoriamento de acetona. Os resultados mostraram melhora das propriedades sensoras do SnO₂ pela dopagem e a melhor resposta sensora ($R_a/R_g = 32,2$) foi obtida para as nanofibras de SnO₂ dopadas com 2 mol% de Eu e para a temperatura de operação de 280 °C. Essa resposta foi cerca de duas vezes superior ao do sensor de SnO2 puro nas mesmas condições de operação. Kou, Xie [33] sintetizaram nanofibras de SnO₂ dopadas com diferentes concentrações de ródio (Rh) (0,2 a 1,0 mol% de Rh). Os sensores de nanofibras de SnO2 dopadas com 0,5 mol% de Rh apresentaram resposta sensora de 60,6, a qual foi ~10 vezes superior à resposta dos sensores de SnO₂ não dopado. Lu, Ding [107] produziram nanofibras de SnO₂ incorporadas com nanopartículas de Pt com boa performance sensora ao gás CH₄.

Muito embora nanofibras de SnO₂ possuam áreas superficiais relativamente elevadas, inerentes à sua morfologia nanoestruturada caracterizada por pequenos diâmetros e grandes comprimentos, percebe-se que, para a sua aplicação prática em sensores de gás, estes nanomateriais requerem processos de modificação superficial para aumentar a área de contato com o gás alvo ou ainda a adição de elementos como dopantes, catalizadores superficiais ou formando nanocompósitos com o SnO₂, que tem a função de melhorar as propriedades sensoras do SnO₂. Por essa razão e com o intuito de aumentar ainda mais a performance sensora do SnO₂, muitas pesquisas tem recorrido a preparação de nanofibras com morfologia tubular (oca), uma vez que estas nanoestruturas ocas apresentam maior área superficial específica.

4.1.2 Sensores de nanofibras com morfologia tubular

Os métodos usuais de preparação de nanofibras com morfologia oca ou tubular por eletrofiação, como vimos, envolvem o uso de materiais sacrificiais, métodos de separação de fase (como o uso de polímeros imiscíveis) ou ainda o uso de duas ou mais soluções passando por tubulaçãos distintas no processo de eletrofiação para formar as nanofibras core-shell. Essas nanoestruturas, por apresentarem maior área superficial específica, são capazes de oferecer muito mais sítios reativos do que as nanofibras sólidas tradicionais e, por conseguinte, induzem a sensores com capacidade de sensoriamento superiores. Além disso, nanofibras ocas de semicondutores metálicos possuem maior possibilidade de modulação da camada de carga espacial, maior facilidade de transporte eletrônico (tendo em visto os canais internos) e menor caminho de difusão para difusão de íons e elétrons [64].

Diante disto, uma diversidade de trabalhos vem abordando a síntese e aplicação de nanofibras de dióxido de estanho com morfologia tubular em sensores de gás. As pesquisas envolvem tanto a preparação de nanofibras de SnO_2 não dopadas ou aditivadas [9, 62, 63, 76, 146], quanto a preparação destas nanoestruturas dopadas com diversos elementos metálicos [34, 78, 147-149], modificadas superficialmente pela adição de nanopartículas metálicas ou de óxidos metálicos [74, 111] e a obtenção de nanocompósitos fibrosos de SnO_2 com outros óxidos [50, 60, 61, 150, 151].

Micro e nanofibras sólidas e ocas de SnO_2 foram preparadas por eletrofiação coaxial e testadas no sensoriamento de diferentes tipos de gases (NO, HCHO, C_2H_2 , CO₂, CO, Cl₂, $C_6H_5CH_3$, NH₃ e etanol) [76]. A Figura XIV mostra as fibras sólidas e ocas obtidas por Cao, Zhang [76], as quais apresentaram-se aleatoriamente orientadas e com diâmetros entre 400 nm e 750 nm. Uma comparação entre os diâmetros destas fibras e os diâmetros obtidos em outros trabalhos pode ser vista na Tabela IV.

Figura XIV - Imagens de MEV de fibras de SnO₂ sólidas (a) e ocas (b) obtidas por eletrofiação simples e coaxial respectivamente. Adaptada de Cao, Zhang [76].

As fibras obtidas por Cao, Zhang [76] apresentaram diâmetros numa faixa mais elevada do que as fibras obtidas em outros trabalhos recentes da literatura; a formação de fibras com largos diâmetros pode estar relacionada a altas concentrações poliméricas na solução precursora [9, 152]. Como se vê, existe uma redução nos diâmetros das fibras ocas após a calcinação, que ocorre pela eliminação de material orgânico. Os diâmetros das fibras calcinadas variaram de 80 a

750 nm e dependem fortemente da concentração polimérica da solução precursora [9]. He, Wan [153] estabeleceu uma relação entre o diâmetro (d) de fibras eletrofiadas e a concentração do polímero na solução (C) da seguinte forma

encolhimento di (15) diâmetros das fi

Onde δ é um expoente que depende do tipo de polímero. δ assume valor 6 para a poliacrilonitrila e 3 para o poliuretano, por exemplo.

 $d \propto C^{\delta}$

É interessante notar também que as fibras ocas apresentaram diâmetros numa faixa mais larga do que as fibras sólidas, o que pode ser averiguado analisando as Tabelas III e IV. Isto provavelmente se deve ao menor encolhimento dessas fibras na calcinação e aos maiores diâmetros das fibras ocas não calcinadas.

Material	Diâmetro das fibras não calcinadas (nm)	Diâmetro das fibras após a calcinação (nm)	Espessura de parede (nm)	vessura de Referências	
SnO ₂	400-600	300-500	15-20	[39]	
SnO_2	50-300	-	-	[171]	
SnO_2	800-1100	400-750	-	[76]	
SnO_2	-	80-100	~20	[56]	
SnO_2	-	80-400	-	[9]	
SnO_2	-	~200	20-30	[146]	
Pd/SnO ₂	-	100-200	-	[74]	
ZnO/SnO ₂	~200	~150	~20	[151]	
TiO ₂ /SnO ₂	-	~450	50	[61]	
SnO ₂ /óxido e grafeno	-	80-100	-	[63]	
CuO/SnO ₂	-	~200	-	[111]	

Tabela IV - Diâmetro de fibras ocas de SnO2 obtidas por eletrofiação.

Os sensores preparados a partir das fibras de SnO_2 ocas mostraram maior resposta sensora do que os obtidos a partir de fibras sólidas para diversas concentrações de etanol, como está evidenciado na Figura XV (a). Uma comparação entre as respostas sensoras ao gás etanol e a outros tipos de gases pode ser vista na Figura XV (b).

Como se vê, os sensores, tanto de fibras sólidas quanto de fibras ocas, apresentam resposta sensora superior ao gás

etanol, sendo que os sensores de fibras ocas apresentam performance muito maior do que a daqueles de fibras não ocas (cerca de 3,5 vezes superior). A maior resposta sensora das fibras ocas ao etanol foi associada à maior área superficial destas fibras [56], de forma que estas fibras podem reagir com uma quantidade maior de moléculas gasosas do que as fibras sólidas, resultando em uma maior sensibilidade a este gás [76].

Figura XV – (a) Dependência da resposta dos sensores obtidos a partir de fibras sólidas e ocas de SnO₂ em relação à concentração de etanol na temperatura de operação de 260 °C. (b) Respostas dos sensores de fibras de SnO₂ sólidas e ocas a 500 ppm de diversos gases na temperatura de operação de 260 °C. Adaptado de Cao, Zhang [76].

Cheng, Ma [146] também prepararam nanofibras ocas de SnO_2 por eletrofiação e aplicaram no sensoriamento de etanol. A Figura XVI (a) apresenta uma imagem típica de MEV das nanofibras ocas de SnO_2 produzidas pelos autores, na qual

pode ser vista a morfologia oca das fibras. A performance destas fibras no sensoriamento de 500 ppm de etanol em diferentes temperaturas é mostrada na Figura XVI (b). Observa-se que a temperatura de operação ótima para estes sensores é de 300 °C, aonde a resposta é máxima.

Figura XVI - (a) Imagem típica de MEV de nanofibras ocas de SnO₂.
(b) Resposta do sensor preparado a 500 ppm de etanol em diferentes temperaturas de operação. Adaptado de Cheng, Ma [146].

Como já discutido, elevadas áreas superficiais são essenciais para produzir sensores com melhor performance sensora. Diante disto, Fan, He [62] sintetizaram nanofibras hierárquicas ocas de SnO₂ combinando a técnica de eletrofiação com a corrosão com plasma de oxigênio e a pulverização catódica (do inglês sputtering). A corrosão com plasma de oxigênio foi feita em nanofibras de PVP para produzir um molde hierárquico de PVP. Em seguida, uma camada de SnO₂ foi depositada na superfície deste molde pulverização catódica (*sputtering*), usando que foi posteriormente tratada termicamente a 600 °C para obter as nanofibras hierárquicas de SnO2 (Figura XVII). A eliminação do molde de PVP na calcinação possibilitou a formação de uma morfologia tubular, como é mostrado esquematicamente na Figura XVII e na Figura XVIII (f). Diferentes tempos de

ataque corrosivo com plasma de O_2 e de *sputtering* foram utilizados, produzindo diferentes morfologias.

Figura XVII - Esquema ilustrativo da preparação de nanofibras hierárquicas de SnO₂ combinado as técnicas de eletrofiação, corrosão com plasma de O₂ e pulverização catódica. Adaptada de Fan, He [62].

A Figura XVIII mostra a morfologia das nanofibras obtidas nas diferentes condições de síntese. As fibras sem a corrosão por plasma de O_2 apresentam superfície lisa (Figura XVIII (a)), enquanto as fibras com diferentes tempos de ataque com plasma de O_2 mostram superfície rugosa e formada por estruturas semelhantes a ramos, compondo estruturas hierárquicas (Figura XVIII (b-e)).

Figura XVIII - Imagens de MEV de nanofibras de SnO_2 com: (a) ataque com plasma de 0 s e sputtering de 190 s, (b) e (c) ataque com plasma de 30 s e sputtering de 190 s, (d) ataque com plasma de 30 s e sputtering de 480 s, e (e) ataque com plasma de 30 s e sputtering de 960 s. Vista transversal da amostra da com ataque de 30 s e sputtering de 480 s. Adaptada de Fan, He [62].

Como no caso das nanofibras sólidas, a introdução de aditivos seja como dopantes, nanopartículas superficiais ou formando compósitos, levam a uma melhora nas propriedades sensoras das nanofibras ocas. Com base nisso, Qin, Xu [50] prepararam nanofibras porosas e ocas de compósitos CeO₂-SnO₂ com diversos teores de CeO₂ (0, 3, 5, 7 e 10 mol%) para aplicação em sensores de H₂S e etanol. Essas nanofibras apresentaram boa performance sensora a 20 ppm do gás H₂S e

a 200 ppm de etanol, como mostra a Figura XX. É bem conhecido que o CeO₂ nanoestruturado possui uma grande quantidade de vacâncias de oxigênio e capacidade pseudoinfinita de troca entre os estados de oxidação Ce⁴⁺ e Ce³⁺ [5, 154]. Assim, a introdução do CeO₂ pode melhorar as características sensoras do SnO₂ [149, 155]. Com se vê na Figura XX, a adição de 3 mol% de CeO₂ melhora consideravelmente a resposta sensora ao gás H₂S e a

temperatura de operação ótima para o sensor foi de ~210 °C. No entanto, adições de teores mais elevados de CeO₂ proporcionam o efeito inverso e a resposta sensora de nanofibras de SnO₂ diminui drasticamente. Com relação ao etanol, existe uma tendência de aumento da resposta sensora com o aumento da concentração molar de CeO₂ até 7 mol%.

Figura XIX - Resposta dos sensores obtidos a partir de nanofibras ocas não hieráquicas e hierárquicas de SnO₂ a 1000 ppm de etanol. Amostra 1: ataque por plasma de 0 s e sputtering de 90 s; Amostra 2: ataque por plasma de 30 s e sputtering de 190 s; Amostra 3: ataque por plasma de 30 s e sputtering de 480 s; Amostra 4: ataque por plasma de 30 s e sputtering de 960 s. Adaptada de Fan, He [62].

A introdução de 10 mol% de CeO₂ leva a uma queda na performance de sensoriamento de nanofibras de SnO₂. Segundo Qin, Xu [50], a adição excessiva de Ce leva à formação de grande quantidade de CeO₂ no nanocompósito, que por sua vez, dificulta a transferência de elétrons no sensor de gás, já que o CeO₂ possui condutividade relativamente baixa. A temperatura de operação ótima para a detecção de etanol foi estipulada como sendo 370 °C, com pode ser visto na Figura XX. Nesta temperatura, a resposta sensora é máxima e começa a decair. O aumento da resposta sensora aos gases H₂S e etanol com o aumento da temperatura está relacionado à oxidação destes gases na presença de ar e alta temperatura.

Figura XX - Respostas dos sensores de nanofibras ocas de SnO₂-CeO₂ a 20 ppm de H₂S e 200 ppm de etanol em função da temperatura de operação do sensor. Adaptado de Qin, Xu [50].

Com se sabe, o mecanismo de sensoriamento do SnO₂ pode ser atribuído, principalmente, à adsorção e dessorção de moléculas gasosas na superfície do material sensor, que causa uma diferença de resistência na presença de ar e do gás alvo [32, 33, 103, 156]. As vacâncias de oxigênio podem influenciar significativamente o processo de adsorção de moléculas gasosas. Nas nanofibras de SnO₂-CeO₂ produzidas por Qin, Xu [50], a presença de íons 0^{-} e 0^{2-} e de hidroxilas (OH⁻) adsorvidos quimicamente na superfície do SnO₂ foi confirmada por meio da técnica de Espectroscopia de Fotoelétrons Excitados por Raios-X (XPS). A presença destes íons é indicada por um pico no espectro de XPS em 531,5 eV [157, 158]. Os resultados de XPS também confirmaram a presença do Sn, Ce e O, com picos relativos aos íons Sn²⁺, Sn⁴⁺, Ce³⁺ e Ce⁴⁺. A adição do Ce permite a melhora das propriedades sensoras ao etanol e ao H₂S porque introduz o par redox Ce³⁺ e Ce⁴⁺ e promove também o aumento da razão Sn²⁺/Sn⁴⁺. A coexistência destes estados de oxidação e variação entre eles na superfície do material promove muitas vacâncias adicionais e o Ce^{4+} retiram elétrons da superfície para a conversão $Ce^{4+} \rightarrow Ce^{3+}$ [159]. Além disso, o CeO_2 é também um ótimo material sensor que funciona semelhantemente ao SnO₂ [155, 160]. Desta forma, comparado ao sensor de SnO2 puro, os sensores de nanofibras ocas de SnO₂-CeO₂ mostram mais eficiência na detecção de gases como etanol e H₂S. Aliado a isto, as nanofibras ocas, como vimos, apresentam elevada razão área/volume, além de possuírem canais por onde os gases podem difundir e entrar em contato mais prontamente com a superfície. Isto promove uma melhora ainda mais significativa da resposta sensora.

A dopagem é um dos métodos mais abordados para melhorar a resposta sensora de nanofibras ocas de SnO2. Mohanapriya, Segawa [149] prepararam sensores de etanol a partir de nanofibras ocas de SnO2 dopado com diversas concentrações de cério (Ce). Os sensores de SnO2 dopado com 6 mol% de Ce apresentaram os melhores resultados, com uma resposta cerca de 10 vezes superior àquela dos sensores de nanofibras de SnO₂ não dopado. Cheng, Ma [147] sintetizaram nanofibras ocas de SnO₂ dopado com ítrio (Y) que apresentaram alta sensibilidade ao gás acetona. As nanofibras ocas de SnO2 dopadas com 0,4 wt.% Y exibirama a melhor resposta sensora ($R_a/R_g = 174$) a 500 ppm do gás acetona na temperatura de operação de 300 °C. Comparada à melhor resposta sensora obtida para os sensores de nanofibras ocas de SnO₂ não dopado ($R_a/R_g = 22,7$) foi cerca de 7,7 vezes maior. Nanofibras ocas de SnO2 dopado com diversas frações molares de níquel (Ni) (0, 3, 5 e 10 mol% de Ni) e diâmetros variando entre 150 e 250 nm foram preparadas por Cheng, Wang [78] por meio do ajuste da concentração de Ni²⁺ na solução precursora no processo de eletrofiação. As nanofibras não dopadas e dopadas com diversas concentrações de Ni são mostradas na Figura XXI. Com se vê, as nanofibras apresentam superfície rugosa e composta de diversos nanogrãos. A superfície rugosa a elevada área superficial de nanoestruturas ocas podem proporcionar melhores performances de sensoriamento [19, 23, 25, 26].

O gráfico da Figura XXII mostra as respostas sensoras de nanofibras ocas de SnO_2 não dopadas e dopadas com

diferentes concentrações de Ni a 100 ppm do gás acetona em diferentes temperaturas de operação. Como pode ser visto, existe uma melhora na resposta sensora do SnO2 com o aumento do teor de Ni até 5 mol%. Acima deste valor, como está evidenciado pela dopagem com 10 mol% de Ni, a resposta sensora decai. Se a concentração de Ni no SnO₂ aumenta muito, clusters de NiO começam a se formar e o diâmetro destes clusters aumenta com o aumento do teor de Ni acima do limite de solubilidade do Ni no SnO₂. Desta forma, uma diminuição na resposta ao gás acetona ocorre e deve a dois fatores: (1) largos clusters de NiO podem causar uma diminuição na transdução elétrica de nanofibras de SnO₂, ou seja, na capacidade deste material de converter sinais elétricos e (2) outro efeito que pode ocorrer é a decomposição da acetona na superfície dos clusters de NiO, formando CO₂ e H_2O e sem produzir sinal elétrico algum [78, 161].

Figura XXI - Imagens de MEV de nanofibras ocas de SnO₂ não dopado (a) e dopado com: (b) 3 mol% de Ni, (c) 5 mol% de Ni e (d) 10 mol% de Ni obtidas por eletrofiação. Adaptado de Cheng, Wang [78].

Figura XXII - Respostas sensoras de nanofibras ocas e não ocas de SnO₂ não dopadas e dopadas com Ni a 100 ppm de acetona e em diferentes temperaturas de operação. O gráfico de barras no canto superior esquerdo mostra as respostas sensoras na temperatura de operação de 340 °C, determinada como sendo a temperatura ótima de operação. Adaptada de Cheng, Wang [78].

A melhor resposta sensora, então, foi obtida para a dopagem com 5 mol% Ni e a temperatura ótima de operação, determinada pelo ponto de máxima resposta, foi de 340 °C para todos os sensores. Para efeito de comparação, sensores de nanofibras sólidas de SnO_2 dopado com 5 mol% de Ni também foram preparados e testados na detecção de acetona nas mesmas condições de teste. Como se vê na Figura XXII, a resposta sensora de nanofibras ocas de SnO_2 dopadas com 5 mol% Ni é superior à de nanofibras de 5 mol% Ni-SnO₂ não ocas. Isto mostra que nanofibras ocas são mais vantajosas do que nanofibras sólidas na detecção de acetona, uma vez que a sua estrutura aberta e bem definida de canais permite uma maior difusão de moléculas gasosas e ainda apresentam maior área superficial ativa para reação entre essas moléculas gasosas e o SnO_2 [78].

A adição de pequenas quantidades de Ni proporciona melhora nas propriedades sensoras do SnO_2 uma vez que vacâncias de oxigênio são geradas para compensação de cargas. Este processo ocorre pela substituição parcial dos íons Sn^{4+} por íons Ni^{2+} na matriz do SnO_2 , de acordo com a reação [117]

$$NiO \xrightarrow{SnO_2} Ni''_{Sn} + O_0 + V_0^{**}$$

(16)

Essas vacâncias de O₂ são essenciais para a detecção de gases, principalmente porque permitem a adsorção de moléculas de oxigênio, influenciando a resistência elétrica. Além disso, uma fase secundária de NiO pode se formar nas camadas tubulares das fibras de SnO₂ formando junções p-n localizadas [121], como no caso de nanocompósitos de SnO₂-ZnO, contribuindo para o aumento da barreira potencial e, em consequência, levando a melhores respostas sensoras.

A preparação de nanofibras ocas de SnO₂ funcionalizadas com outros elementos e a formação de nanocompósitos fibrosos de SnO₂ também é uma estratégia recorrente para produzir sensores mais efetivos. Lin, Wei [74] produziram nanofibras ocas de SnO2 funcionalizadas com nanopartículas de paládio (Pd) com propriedades sensoras melhoradas a vapores de formaldeído. Além disso, a temperatura ótima de operação dos sensores passou de 180 °C a 160 °C pela adição de nanopartículas de Pd. A resposta sensora a 100 ppm de formaldeído nessas temperaturas passou de 5,4 (nanofibras sem Pd) para 18,8 pela adição de Pd. O sensoriamento de nanofibras ocas de Pd-SnO2 foi associado aos mecanismos de adsorção de íons de O2 na superfície do SnO2 e posterior reação destes com as moléculas do formaldeído. A adsorção de moléculas gasosas é melhorada pela maior área superficial de fibras ocas e as melhores propriedades de transporte destas quando comparadas a nanofibras sólidas [162]. A reação do formaldeído com os íons de O2 na superfície do SnO2 na temperatura de operação do sensor ocorre da seguinte forma [163]

$$HCHO + 20^{-}(ads) \rightarrow CO_2 + H_2O + 2e^{-}$$
(17)

As nanopartículas de Pd tem um papel importante na determinação das propriedades sensoras de nanofibras de SnO₂, em virtude da diferença de gaps de energia entre o

 $SnO_2 (E = 3,6 \text{ eV})$ e o PdO (E = 5,12 eV), os elétrons no SnO_2 tendem a fluir para o PdO, levando à formação de uma barreira de Schottky e aumento da camada de depleção eletrônica na interface SnO_2 -PdO. Isto leva a uma maior resistência nas fibras de Pd-SnO₂ quando comparadas às fibras de SnO_2 . Quando expostas ao formaldeído, as nanofibras de Pd-SnO₂ podem gerar uma maior diferença de resistência do que as nanofibras não funcionalizadas com Pd, ou seja, tem-se respostas sensoras mais elevadas [74]. Além disso, as nanopartículas de Pd tem excelentes propriedades catalíticas e atuam promovendo a ionização das moléculas de O_2 [164], facilitando a adsorção destas na superfície do SnO_2 .

Wan, Ma [151] fabricaram sensores de etanol a partir de nanofibras de $ZnO-SnO_2$ porosas e ocas por eletrofiação. A

Figura XXIII (a) mostra uma imagem típica de MET das nanofibras de ZnO-SnO₂ produzidas, evidenciando a morfologia porosa e rugosa destas. Os resultados também mostram que estas nanofibras são compostas de nanopartículas com tamanhos variando entre 5-20 nm e a parede, como pode ser vista no detalhe da Figura XXIII, apresenta uma espessura de ~20 nm. A Figura XXIII (b) exibe as respostas do sensor obtido a 200 ppm de etanol em diferentes temperaturas de operação. Como pode ser observado, a máxima resposta sensora ocorre na temperatura de 260 °C. A elevada resposta sensora destas fibras pode estar associada à larga área superficial proporcionada por fibras ocas (superfície interna e externa), porosas e com elevada rugosidade superficial. Além disso, nanofibras consistindo de inúmeros pequenos cristais podem facilitar a transferência de moléculas de etanol e melhorar a taxa de transporte de portadores de carga através das barreiras ao longo de fibras ocas [165]. Por outro lado, heterojunções são formadas entre o ZnO e o SnO₂, levando ao aumento da resposta sensora, como foi visto na seção 4.1.1.

Figura XXIII - (a) Imagem típica de MET de nanofibras ocas de ZnO-SnO₂ e (b) Resposta sensora de nanofibras de ZnO-SnO₂ a 200 ppm de etanol em diferentes temperaturas de operação. Adaptado de Wan, Ma [151].

Mais recentemente Yang, Gao [111] prepararam nanofibras ocas de SnO_2 modificadas com CuO com elevada seletividade ao gás H₂S. A Figura XXIV mostra uma típica imagem de MEV das nanofibras ocas de SnO_2 modificadas com CuO (a) e a resposta sensora a diversos tipos de gases (b). Como visto antes, o mecanismo responsável pelas elevadas respostas sensoras de nanofibras de SnO_2 aditivadas com CuO é a formação de heterojunções p-n na interface p-CuO/n-SnO₂. A formação de junções p-n cria regiões de depleção eletrônicas extras em atmosferas ricas em O₂, levando a altas resistências elétricas. Com a exposição ao gás H₂S, grandes quantidades de elétrons são liberadas, diminuindo a resistência elétrica do sensor. Além disso, como ressaltado anteriormente, pode ocorrer a formação de CuS que tem alta condutividade e leva à quebra parcial das heterojunções p-n e à uma diminuição ainda maior da resistência do material sob exposição ao gás H₂S. Todos estes fatores contribuem para a maior resposta sensora das fibras de CuO-SnO₂ a este gás, quando comparada às respostas a outros tipos de gases (Figura XXIV (b)).

Figura XXIV - (a) Imagem de MEV de nanofibras ocas de SnO₂ modificadas com CuO. Adaptada de Yang, Gao [111].

Na Tabela V é apresentado um resumo da performance sensora de nanofibras sólidas e ocas de SnO₂ a diversos tipos de gases. Esta tabela apresenta as respostas sensoras, a concentração do gás e a temperatura de operação ótimizada para o SnO2 não dopado, dopado, funcionalizado/modificado com nanopartículas de óxidos metálicos e formando nanocompósitos com outros óxidos. As respostas sensoras diferem de gás para gás, uma vez que a interação de cada tipo de gás com a superfície do sensor é diferente. Como pode ser visto, a maioria das pesquisas recentes em sensores preparados a partir de nanofibras de SnO₂ se concentram no sensoriamento dos gases etanol e acetona. Para cada tipo de gás as respostas variam muito e dependem da concentração do gás, da morfologia (sólida, oca, alinhada ou não alinhada), da presença de aditivos (dopantes, modificadores superficiais, nanocompósitos) e suas quantidades e da forma como estes aditivos estão presentes no material. Muito embora nanofibras ocas possuam área superficial mais elevada do que nanofibras sólidas [71], o tipo e quantidade de aditivo parece ter um efeito mais pronunciado sobre a resposta sensora do que a morfologia do material, como se observa na Tabela V. A formação de nanocompósitos com ZnO e a funcionalização com CuO ou Au parecem produzir um melhora mais significativa nas propriedades sensoras do SnO₂.

Tabela V - Performance dos sensores de nanofibras de SnO_2 sólidas e ocas a diferentes tipos de gases. Esta tabela está organizada de acordo
com o tipo de gás e por ano de publicação, seguindo a sequência de nanofibras sólidas e depois ocas não dopadas, dopadas, modificadas e os
nanocompósitos por último.

Material sensor	Morfologia	Gas	Concentração (ppm)	Temperatura de operação (°C)	Resposta [*]	Referência
SnO ₂	Nanofibras sólidas	NO ₂	2,5	150	57	[145]
SnO2 dopado com Ni	Nanofibras sólidas	NO_2	20	250	90,3	[104]
SnO ₂ dopado com 8 at% LaOCl	Nanofibras sólidas	CO_2	1000	300	3,7	[156]
SnO ₂	Nanofibras sólidas	H_2S	10	300	19800	[141]
SnO2 modificado por CuO	Nanofibras sólidas	H_2S	1	300	12500	[141]
Nanocompósito 0,5CuO- 0,5SnO ₂	Nanofibras sólidas	H_2S	Não especificada	150	~3000	[143]
SnO_2 modificado com CuO	Nanofibras ocas	H_2S	10	125	410	[111]
SnO_2	Nanofibras sólidas e bem	Etanol	100	300	56	[172]
SnO2 dopado com 1 at% Sr	Nanofibras sólidas e não orientadas	Etanol	100	260	19	[103]
SnO ₂ dopado com 3 mol% Co	Nanofibras sólidas	Etanol	100	300	40,1	[100]
Nanocompósito ZnO-SnO ₂	Nanofibras sólidas	Etanol	20	210	97,5	[125]
SnO_2	Micro/nanofibras ocas	Etanol	500	260	47,14	[76]
SnO_2	Nanofibras ocas	Etanol	500	300	76	[146]
SnO_2	Nanofibras hieráquicas ocas	Etanol	100	300	37	[62]
SnO ₂ dopado com 6 mol% Ce	Nanofibras ocas	Etanol	50**	250	250-300	[149]
SnO ₂ dopado com 0,6 wt% Pr	Nanofibras ocas	Etanol	200	300	64,3	[148]
SnO ₂ dopado com 1 wt% Yb	Nanofibras ocas	Etanol	500	340	170	[34]
Nanocompósito SnO ₂ -CeO ₂	Nanofibras ocas	Etanol	200	370	~55	[50]
Nanocompósito ZnO-SnO ₂	Nanofibras ocas	Etanol	20	260	83	[151]
SnO ₂ dopado com Co	Nanofibras sólidas não orientadas	CH_4	20	300	30	[102]
SnO ₂ modificado com 20 mol%PtO	Nanofibras sólidas	CH_4	1	350	1,11	[107]
SnO ₂ funcionalizado com 0.1 wt%Pt	Nanofibras sólidas	H_2	2,5	300	16,6	[145]
Nanocompósito 0,10ZnO- 0,90SnO ₂	Nanofibras sólidas	H_2	10	300	168,6	[105]
SnO_2	Nanofibras ocas e bem alinhadas	H_2	1% de H ₂	150	2,4	[9]
SnO ₂ modificado com 1,7 at%Au	Nanofibras sólidas	СО	5	300	84	[109]
Nanocompósito SnO ₂ -30 wt%CuO	Nanofibras sólidas	CO	10	235	95	[144]
SnO ₂ dopado com 2 mol% Eu	Nanofibras sólidas	acetona	100	280	32,2	[32]
SnO ₂ dopado com Ca e Au	Nanofibras sólidas	acetona	100	180	62	[167]
SnO ₂ dopado com 0,5 mol% Rh	Nanofibras sólidas	acetona	50	200	60,6	[33]
SnO ₂ modificado com 1,5 mol%Pd	Nanofibras sólidas	acetona	20	275	23,8	[110]
SnO ₂ dopado com 5 at% Ni	Nanofibras ocas	acetona	100	340	64,9	[78]
SnO ₂ dopado com 0,4 wt% Y	Nanofibras ocas	acetona	500	300	174	[147]
SnO ₂ funcionalizado com nanopartículas de Pd	Nanofibras ocas	formaldeido	100	160	18,8	[74]
SnO ₂ /óxido de grafeno	Nanofibras ocas	formaldeído	100	120	32	[63]

*Melhor resposta sensora; **Não está claro no artigo a concentração do gás testado

Conclusão

Este trabalho apresenta uma revisão dos progressos recentes em sensores de gases obtidos a partir de nanofibras sólidas e com morfologia tubular de SnO₂: não dopado, dopado, formando nanocompósitos com outros materiais e modificado com nanopartículas de óxidos metálicos. Uma breve discussão a respeito do método de eletrofiação para obtenção de nanofibras sólidas e ocas e sobre o mecanismo de detecção de gases do dióxido de estanho também foi apresentada.

As pesquisas recentes têm focado na produção de nanofibras de SnO₂ com diferentes morfologias – tais como nanofibras sólidas, ocas, porosas e rugosas - e diâmetros que variam de 30 nm a 750 nm, visando otimizar a performance nas aplicações em sensores. Além disso, a modificação de nanofibras de SnO2 com diferentes aditivos tem sido bastante investigada. A introdução de aditivos nas nanofibras de SnO₂, seja como dopante ou como uma segunda fase tem efeito significativo nas propriedades sensoras do SnO2. Atualmente, busca-se compreender melhor o mecanismo segundo o qual alguns aditivos produzem melhoras nas propriedades sensoras do SnO₂, descobrir novos aditivos e otimizar o teor dos aditivos já utilizados para o SnO2 quando do seu uso em nanofibras. Os principais aditivos que vêm sendo estudados para melhorar a resposta sensora de nanofibras de SnO₂, são: o ZnO, CuO e Au, em virtude de serem aqueles que vêm produzindo as melhores respostas sensoras. Estes aditivos presentes principalmente estão como modificadores superficiais ou formando nanocompósitos com o SnO₂.

Apesar dos avanços tecnológicos na otimização das propriedades sensoras de nanofibras de SnO_2 , muito ainda precisa ser compreendido a respeito do princípio de funcionamento de sensores fabricados a partir destes materiais. Contudo, as nanofibras de SnO_2 como materiais sensores promovem boas performances sensoras e podem abrir caminhos para novos desenvolvimentos neste campo tecnológico.

Referências

- [1] Viter, R., Katoch, A., Kim, S. S. Grain size dependent bandgap shift of SnO₂ nanofibers. Metals and Materials International, 20, 163-7, 2014.
- [2] Park, J. Y., Asokan, K., Choi, S.-W., Kim, S. S. Growth kinetics of nanograins in SnO₂ fibers and size dependent sensing properties. Sensors and Actuators B: Chemical, 152, 254-60, 2011.
- [3] Zhao, Y.-X., Zhou, X.-H., Li, L., Xu, W., Kang, W.-M., Cheng, B.-W. Preparation of porous CeO₂/CuO/Al₂O₃ fibers via electro-blown spinning method. Materials Letters, 164, 460-3, 2016.
- [4] Gu, Y., Shen, H., Li, L., Liu, W., Wang, W., Xu, D. Electrospinning synthesis and photoluminescence properties of SnO₂:xEu³⁺ nanofibers. Chemical Research in Chinese Universities, 30, 879-84, 2014.
- [5] Firmino, H. C. T., Nascimento, E. P., Neves, G. A.,

Menezes, R. R. Atividade antimicrobiana de nanopartículas de óxido de cério. Revista Eletrônica de Materiais e Processos, 1, 64-95, 2017.

- [6] Cheng, J. P., Wang, J., Li, Q. Q., Liu, H. G., Li, Y. A review of recent developments in tin dioxide composites for gas sensing application. Journal of Industrial and Engineering Chemistry, 44, 1-22, 2016.
- [7] Liang, D., Liu, S., Guo, Y., Wang, Z., Jiang, W., Liu, C., Ding, W., Wang, H., Wang, N., Zhang, Z. Crystalline size-control of SnO₂ nanoparticles with tunable properties prepared by HNO₃-ethanol assisted precipitation. Journal of Alloys and Compounds, 728, 118-25, 2017.
- [8] Wang, H., Rogach, A. L. Hierarchical SnO₂ nanostructures: recent advances in design, synthesis, and applications. Chemistry of Materials, 26, 123-33, 2013.
- [9] Ab Kadir, R., Li, Z., Sadek, A. Z., Abdul Rani, R., Zoolfakar, A. S., Field, M. R., Ou, J. Z., Chrimes, A. F., Kalantar-Zadeh, K. Electrospun granular hollow SnO₂ nanofibers hydrogen gas sensors operating at low temperatures. The Journal of Physical Chemistry C, 118, 3129-39, 2014.
- [10] Mohanapriya, P., Sathish, C. I., Pradeepkumar, R., Segawa, H., Yamaura, K., Watanabe, K., Natarajan, T. S., Jaya, N. V. Optical and magnetic studies of electrospun Mn-doped SnO₂ hollow nanofiber dilute magnetic semiconductor. Journal of Nanoscience and Nanotechnology, 13, 5391-400, 2013.
- [11] Sukunta, J., Wisitsoraat, A., Tuantranont, A., Phanichphant, S., Liewhiran, C. Highly-sensitive H₂S sensors based on flame-made V-substituted SnO₂ sensing films. Sensors and Actuators B: Chemical, 242, 1095-107, 2016.
- [12] Rajeshwaran, P., Sivarajan, A. Influence of Mn doping on structural, optical and acetone gas sensing properties of SnO₂ nanoparticles by a novel microwave technique. Journal of Materials Science: Materials in Electronics, 26, 539-46, 2015.
- [13] Thungon, P. D., Kakoti, A., Ngashangva, L., Goswami, P. Advances in developing rapid, reliable and portable detection systems for alcohol. Biosensors and Bioelectronics, 97, 83-99, 2017.
- [14] Wang, Y., Wang, X., Yi, G., Xu, Y., Zhou, L., Wei, Y. Synthesis of layered hierarchical porous SnO₂ for enhancing gas sensing performance. Journal of Porous Materials, 23, 1459-66, 2016.
- [15] Liu, L., Shu, S., Zhang, G., Liu, S. Highly selective sensing of C₂H₆O, HCHO, and C₃H₆O gases by controlling SnO₂ nanoparticle vacancies. ACS Applied Nano Materials, 1, 31-7, 2018.
- [16] Suematsu, K., Shin, Y., Hua, Z., Yoshida, K., Yuasa, M., Kida, T., Shimanoe, K. Nanoparticle cluster gas sensor: controlled clustering of SnO₂ nanoparticles

for highly sensitive toluene detection. ACS Applied Materials & Interfaces, 6, 5319-26, 2014.

- [17] Wei, Y., Chen, C., Yuan, G., Gao, S. SnO₂ nanocrystals with abundant oxygen vacancies: preparation and room temperature NO₂ sensing. Journal of Alloys and Compounds, 681, 43-9, 2016.
- [18] Zhang, W., Yang, B., Liu, J., Chen, X., Wang, X., Yang, C. Highly sensitive and low operating temperature SnO₂ gas sensor doped by Cu and Zn two elements. Sensors and Actuators B: Chemical, 243, 982-9, 2017.
- [19] Qiang, Z., Ma, S. Y., Jiao, H. Y., Wang, T. T., Jiang, X. H., Jin, W. X., Yang, H. M., Chen, H. Highly sensitive and selective ethanol sensors using porous SnO₂ hollow spheres. Ceramics International, 42, 18983-90, 2016.
- [20] Zeng, W., Li, T., Li, T., Hao, J., Li, Y. Template-free synthesis of highly ethanol-response hollow SnO₂ spheres using hydrothermal process. Journal of Materials Science: Materials in Electronics, 26, 1192-7, 2015.
- [21] Li, Z., Yi, J. Enhanced ethanol sensing of Ni-doped SnO₂ hollow spheres synthesized by a one-pot hydrothermal method. Sensors and Actuators B: Chemical, 243, 96-103, 2017.
- [22] Lu, Z., Zhou, Q., Xu, L., Gui, Y., Zhao, Z., Tang, C., Chen, W. Synthesis and characterization of highly sensitive hydrogen (H₂) sensing device based on Ag doped SnO₂ nanospheres. Materials, 11, 492, 2018.
- [23] Zhang, J., Guo, J., Xu, H., Cao, B. Reactive-template fabrication of porous SnO₂ nanotubes and their remarkable gas-sensing performance. ACS Applied Materials & Interfaces, 5, 7893-8, 2013.
- [24] Zhao, N., Chen, Z., Zeng, W. Enhanced H₂S sensor based on electrospun mesoporous SnO₂ nanotubes. Journal of Materials Science: Materials in Electronics, 26, 9152-7, 2015.
- [25] Bulemo, P. M., Cho, H.-J., Kim, N.-H., Kim, I.-D. Mesoporous SnO_2 nanotubes via electrospinning– etching route: highly sensitive and selective detection of H₂S molecule. ACS Applied Materials & Interfaces, 9, 26304-13, 2017.
- [26] Li, R., Chen, S., Lou, Z., Li, L., Huang, T., Song, Y., Chen, D., Shen, G. Fabrication of porous SnO₂ nanowires gas sensors with enhanced sensitivity. Sensors and Actuators B: Chemical, 252, 79-85, 2017.
- [27] Li, S.-H., Meng, F.-F., Chu, Z., Luo, T., Peng, F.-M., Jin, Z. Mesoporous SnO₂ nanowires: synthesis and ethanol sensing properties. Advances in Condensed Matter Physics, 2017, 2017.
- [28] Li, W. Q., Ma, S. Y., Luo, J., Mao, Y. Z., Cheng, L., Gengzang, D. J., Xu, X. L., Yan, S. H. Synthesis of hollow SnO₂ nanobelts and their application in

acetone sensor. Materials Letters, 132, 338-41, 2014.

- [29] Qin, Z., Liu, Y., Chen, W., Wu, Y., Li, S. The highly promotive sensing performance of a single cerium doped SnO₂ nanobelt sensor to ethanol. Materials Science in Semiconductor Processing, 52, 75-81, 2016.
- [30] Suman, P. H., Felix, A. A., Tuller, H. L., Varela, J. A., Orlandi, M. O. Comparative gas sensor response of SnO₂, SnO and Sn₃O₄ nanobelts to NO₂ and potential interferents. Sensors and Actuators B: Chemical, 208, 122-7, 2015.
- [31] Chen, W., Liu, Y., Qin, Z., Wu, Y., Li, S., Gong, N. Improved ethanediol sensing with single Yb ions doped SnO₂ nanobelt. Ceramics International, 42, 10902-7, 2016.
- [32] Jiang, Z., Zhao, R., Sun, B., Nie, G., Ji, H., Lei, J., Wang, C. Highly sensitive acetone sensor based on Eu-doped SnO₂ electrospun nanofibers. Ceramics International, 42, 15881-8, 2016.
- [33] Kou, X., Xie, N., Chen, F., Wang, T., Guo, L., Wang, C., Wang, Q., Ma, J., Sun, Y., Zhang, H. Superior acetone gas sensor based on electrospun SnO₂ nanofibers by Rh doping. Sensors and Actuators B: Chemical, 256, 861-9, 2018.
- [34] Wang, T. T., Ma, S. Y., Cheng, L., Luo, J., Jiang, X. H., Jin, W. X. Preparation of Yb-doped SnO₂ hollow nanofibers with an enhanced ethanol–gas sensing performance by electrospinning. Sensors and Actuators B: Chemical, 216, 212-20, 2015.
- [35] Hu, J., Zou, C., Su, Y., Li, M., Yang, Z., Ge, M., Zhang, Y. One-step synthesis of 2D C₃N₄-tin oxide gas sensors for enhanced acetone vapor detection. Sensors and Actuators B: Chemical, 253, 641-51, 2017.
- [36] Yu, H., Yang, T., Zhao, R., Xiao, B., Li, Z., Zhang, M. Fast formaldehyde gas sensing response properties of ultrathin SnO₂ nanosheets. RSC Advances, 5, 104574-81, 2015.
- [37] He, H., Shi, L., Fang, Y., Li, X., Song, Q., Zhi, L. Mass production of multi-channeled porous carbon nanofibers and their application as binder-free electrodes for high-performance supercapacitors. Small, 10, 4671-6, 2014.
- [38] Wu, Y., Jiang, Y., Shi, J., Gu, L., Yu, Y. Multichannel porous TiO₂ hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small, 13, 2017.
- [39] Cho, N. G., Yang, D. J., Jin, M.-J., Kim, H.-G., Tuller, H. L., Kim, I.-D. Highly sensitive SnO₂ hollow nanofiber-based NO₂ gas sensors. Sensors and Actuators B: Chemical, 160, 1468-72, 2011.
- [40] Hwang, I.-S., Kim, S.-J., Choi, J.-K., Jung, J.-J., Yoo, D. J., Dong, K.-Y., Ju, B.-K., Lee, J.-H. Large-

scale fabrication of highly sensitive SnO_2 nanowire network gas sensors by single step vapor phase growth. Sensors and Actuators B: Chemical, 165, 97-103, 2012.

- [41] Ohlmaier-Delgadillo, F., Castillo-Ortega, M. M., Ramírez-Bon, R., Armenta-Villegas, L., Rodríguez-Félix, D. E., Santacruz-Ortega, H., del Castillo-Castro, T., Santos-Sauceda, I. Photocatalytic properties of PMMA-TiO₂ class I and class II hybrid nanofibers obtained by electrospinning. Journal of Applied Polymer Science, 133, 2016.
- [42] Ding, B., Wang, M., Wang, X., Yu, J., Sun, G. Electrospun nanomaterials for ultrasensitive sensors. Materials Today, 13, 16-27, 2010.
- [43] Zhou, X.-h., Ju, J.-g., Li, Z.-h., Zhang, M.-l., Deng, N.-p., Cheng, B.-w., Kang, W.-m. Design and fabrication of flexible mesoporous Si-doped Al₂O₃ ultrafine fibers by electro-blow spinning (EBS) technique. Ceramics International, 43, 9729-37, 2017.
- [44] Liu, H.-Y., Chen, Y., Liu, G.-S., Pei, S.-G., Liu, J.-Q., Ji, H., Wang, R.-D. Preparation of high-quality zirconia fibers by super-high rotational centrifugal spinning of inorganic sol. Materials and Manufacturing Processes, 28, 133-8, 2013.
- [45] [45] Quintero, F., Mann, A. B., Pou, J., Lusquiños, F., Riveiro, A. Rapid production of ultralong amorphous ceramic nanofibers by laser spinning. Applied Physics Letters, 90, 1-3, 2007.
- [46] Costa, D. L., Leite, R. S., Neves, G. A., de Lima Santana, L. N., Medeiros, E. S., Menezes, R. R. Synthesis of TiO₂ and ZnO nano and submicrometric fibers by solution blow spinning. Materials Letters, 183, 109-13, 2016.
- [47] Farias, R. M. d. C., Severo, L. L., Costa, D. L. d., Medeiros, E. S. d., Glenn, G. M., Santata, L. N. d. L., Neves, G. d. A., Kiminami, R. H. G. A., Menezes, R. R. Solution blow spun spinel ferrite and highly porous silica nanofibers. Ceramics International, 44, 10984-9, 2018.
- [48] Santos, A. M. C., Mota, M. F., Leite, R. S., Neves, G. A., Medeiros, E. S., Menezes, R. R. Solution blow spun titania nanofibers from solutions of high inorganic/organic precursor ratio. Ceramics International, 44, 1681-9, 2018.
- [49] Zdraveva, E., Fang, J., Mijovic, B., Lin, T. Electrospun nanofibers. In: Bhat G, editor. Structure and properties of high-performance fibers: Elsevier; 2017. p. 267-300.
- [50] Qin, W., Xu, L., Song, J., Xing, R., Song, H. Highly enhanced gas sensing properties of porous SnO₂– CeO₂ composite nanofibers prepared by electrospinning. Sensors and Actuators B: Chemical, 185, 231-7, 2013.

- [51] Shaikh, F. I., Chikhale, L. P., Mulla, I. S., Suryavanshi, S. S. Synthesis, characterization and enhanced acetone sensing performance of Pd loaded Sm doped SnO₂ nanoparticles. Ceramics International, 43, 10307-15, 2017.
- [52] Lu, Y., Wang, P.-J., Zhang, C.-W., Feng, X.-Y., Jiang, L., Zhang, G.-L. First-principle study on the electronic and optical properties of Mn-doped SnO₂. Physica B: Condensed Matter, 406, 3137-41, 2011.
- [53] Liewhiran, C., Tamaekong, N., Wisitsoraat, A., Tuantranont, A., Phanichphant, S. Ultra-sensitive H₂ sensors based on flame-spray-made Pd-loaded SnO₂ sensing films. Sensors and Actuators B: Chemical, 176, 893-905, 2013.
- [54] Wu, R.-J., Lin, D.-J., Yu, M.-R., Chen, M. H., Lai, H.-F. Ag@ SnO₂ core–shell material for use in fastresponse ethanol sensor at room operating temperature. Sensors and Actuators B: Chemical, 178, 185-91, 2013.
- [55] Khajavi, R., Abbasipour, M. Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Scientia Iranica, 19, 2029-34, 2012.
- [56] Wang, L., Luo, X., Zheng, X., Wang, R., Zhang, T. Direct annealing of electrospun synthesized highperformance porous SnO₂ hollow nanofibers for gas sensors. RSC Advances, 3, 9723-8, 2013.
- [57] Jeong, Y. J., Koo, W.-T., Jang, J.-S., Kim, D.-H., Kim, M.-H., Kim, I.-D. Nanoscale PtO₂ catalystsloaded SnO₂ multichannel nanofibers toward highly sensitive acetone sensor. ACS Applied Materials & Interfaces, 10, 2016-25, 2018.
- [58] Huang, Z.-X., Wu, J.-W., Wong, S.-C., Qu, J.-P., Srivatsan, T. The technique of electrospinning for manufacturing core-shell nanofibers. Materials and Manufacturing Processes, 33, 202-19, 2018.
- [59] McCann, J. T., Chen, J. I. L., Li, D., Ye, Z.-G., Xia, Y. Electrospinning of polycrystalline barium titanate nanofibers with controllable morphology and alignment. Chemical Physics Letters, 424, 162-6, 2006.
- [60] Tang, W., Wang, J., Yao, P., Li, X. Hollow hierarchical SnO₂-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sensors and Actuators B: Chemical, 192, 543-9, 2014.
- [61] Ahn, K., Pham-Cong, D., Choi, H. S., Jeong, S.-Y., Cho, J. H., Kim, J., Kim, J.-P., Bae, J.-S., Cho, C.-R. Bandgap-designed TiO₂/SnO₂ hollow hierarchical nanofibers: synthesis, properties, and their photocatalytic mechanism. Current Applied Physics, 16, 251-60, 2016.
- [62] Fan, X.-X., He, X.-L., Li, J.-P., Gao, X.-G., Jia, J. Ethanol sensing properties of hierarchical SnO₂ fibers fabricated with electrospun

polyvinylpyrrolidone template. Vacuum, 128, 112-7, 2016.

- [63] Wang, D., Zhang, M., Chen, Z., Li, H., Chen, A., Wang, X., Yang, J. Enhanced formaldehyde sensing properties of hollow SnO₂ nanofibers by graphene oxide. Sensors and Actuators B: Chemical, 250, 533-42, 2017.
- [64] Homaeigohar, S., Davoudpour, Y., Habibi, Y., Elbahri, M. The electrospun ceramic hollow nanofibers. Nanomaterials, 7, 383, 2017.
- [65] Doshi, J., Reneker, D. H. Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35, 151-60, 1995.
- [66] Angammana, C. J., Jayaram, S. H. A theoretical understanding of the physical mechanisms of electrospinning. Proc ESA Annual Meeting on Electrostatics2011. p. 14-6.
- [67] Taylor, G. Disintegration of water drops in an electric field. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 280, 383-97, 1964.
- [68] Zhang, Y., Li, J., An, G., He, X. Highly porous SnO₂ fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties. Sensors and Actuators B: Chemical, 144, 43-8, 2010.
- [69] Chen, P.-C., Shen, G., Zhou, C. Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Transactions on Nanotechnology, 7, 668-82, 2008.
- [70] Ma, X., Song, H., Guan, C. Interfacial oxidation– dehydration induced formation of porous SnO₂ hollow nanospheres and their gas sensing properties. Sensors and Actuators B: Chemical, 177, 196-204, 2013.
- [71] Wang, Z., Zhao, L., Wang, P., Guo, L., Yu, J. Low material density and high microwave-absorption performance of hollow strontium ferrite nanofibers prepared via coaxial electrospinning. Journal of Alloys and Compounds, 687, 541-7, 2016.
- [72] Zhang, Z., Li, X., Wang, C., Wei, L., Liu, Y., Shao, C. ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. The Journal of Physical Chemistry C, 113, 19397-403, 2009.
- [73] Wang, X., Fan, H., Ren, P. Electrospinning derived hollow SnO₂ microtubes with highly photocatalytic property. Catalysis Communications, 31, 37-41, 2013.
- [74] Lin, Y., Wei, W., Li, Y., Li, F., Zhou, J., Sun, D., Chen, Y., Ruan, S. Preparation of Pd nanoparticledecorated hollow SnO₂ nanofibers and their enhanced formaldehyde sensing properties. Journal of Alloys and Compounds, 651, 690-8, 2015.
- [75] Pascariu, P., Airinei, A., Olaru, N., Petrila, I., Nica,

V., Sacarescu, L., Tudorache, F. Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO₂ nanofibers. Sensors and Actuators B: Chemical, 222, 1024-31, 2016.

- [76] Cao, J., Zhang, T., Li, F., Yang, H., Liu, S. Enhanced ethanol sensing of SnO₂ hollow micro/nanofibers fabricated by coaxial electrospinning. New Journal of Chemistry, 37, 2031-6, 2013.
- [77] Chang, W., Xu, F., Mu, X., Ji, L., Ma, G., Nie, J. Fabrication of nanostructured hollow TiO₂ nanofibers with enhanced photocatalytic activity by coaxial electrospinning. Materials Research Bulletin, 48, 2661-8, 2013.
- [78] Cheng, J. P., Wang, B. B., Zhao, M. G., Liu, F., Zhang, X. B. Nickel-doped tin oxide hollow nanofibers prepared by electrospinning for acetone sensing. Sensors and Actuators B: Chemical, 190, 78-85, 2014.
- [79] Chen, H., Wang, N., Di, J., Zhao, Y., Song, Y., Jiang, L. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir, 26, 11291-6, 2010.
- [80] Abideen, Z. U., Kim, J.-H., Lee, J.-H., Kim, J.-Y., Mirzaei, A., Kim, H. W., Kim, S. S. Electrospun metal oxide composite nanofibers gas sensors: a review. Journal of the Korean Ceramic Society, 54, 366-79, 2017.
- [81] Li, Y., Wei, Q., Song, P., Wang, Q. Synthesis of porous SnO₂ nanocubes via selective leaching and enhanced gas-sensing properties. Applied Surface Science, 360, 1059-65, 2016.
- [82] Li, W., Ma, S., Li, Y., Yang, G., Mao, Y., Luo, J., Gengzang, D., Xu, X., Yan, S. Enhanced ethanol sensing performance of hollow ZnO–SnO2 core– shell nanofibers. Sensors and Actuators B: Chemical, 211, 392-402, 2015.
- [83] Li, S., Liu, Y., Wu, Y., Chen, W., Qin, Z., Gong, N., Yu, D. Highly sensitive formaldehyde resistive sensor based on a single Er-doped SnO₂ nanobelt. Physica B: Condensed Matter, 489, 33-8, 2016.
- [84] Li, T., Zeng, W., Long, H., Wang, Z. Nanosheetassembled hierarchical SnO₂ nanostructures for efficient gas-sensing applications. Sensors and Actuators B: Chemical, 231, 120-8, 2016.
- [85] Tiemann, M. Porous metal oxides as gas sensors. Chemistry-A European Journal, 13, 8376-88, 2007.
- [86] Drmosh, Q. A., Yamani, Z. H., Mohamedkhair, A. K., Hendi, A. H. Y., Hossain, M. K., Ibrahim, A. Gold nanoparticles incorporated SnO₂ thin film: highly responsive and selective detection of NO₂ at room temperature. Materials Letters, 214, 283-6, 2018.
- [87] Batzill, M., Diebold, U. The surface and materials science of tin oxide. Progress in surface science, 79,

47-154, 2005.

- [88] Schipani, F., Miller, D. R., Ponce, M. A., Aldao, C. M., Akbar, S. A., Morris, P. A., Xu, J. C. Conduction mechanisms in SnO₂ single-nanowire gas sensors: An impedance spectroscopy study. Sensors and Actuators B: Chemical, 241, 99-108, 2017.
- [89] Ma, Y., Qu, Y., Zhou, W. Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors. Microchimica Acta, 180, 1181-200, 2013.
- [90] Zhang, L., Yin, Y. Hierarchically mesoporous SnO₂ nanosheets: hydrothermal synthesis and highly ethanol-sensitive properties operated at low temperature. Sensors and Actuators B: Chemical, 185, 594-601, 2013.
- [91] Batzill, M. Surface science studies of gas sensing materials: SnO₂. Sensors, 6, 1345-66, 2006.
- [92] Sun, Y.-F., Liu, S.-B., Meng, F.-L., Liu, J.-Y., Jin, Z., Kong, L.-T., Liu, J.-H. Metal oxide nanostructures and their gas sensing properties: a review. Sensors, 12, 2610-31, 2012.
- [93] Stanoiu, A., Somacescu, S., Calderon-Moreno, J. M., Teodorescu, V. S., Florea, O. G., Sackmann, A., Simion, C. E. Low level NO₂ detection under humid background and associated sensing mechanism for mesoporous SnO₂. Sensors and Actuators B: Chemical, 231, 166-74, 2016.
- [94] Ogawa, H., Nishikawa, M., Abe, A. Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. Journal of Applied Physics, 53, 4448-55, 1982.
- [95] Xu, C., Tamaki, J., Miura, N., Yamazoe, N. Grain size effects on gas sensitivity of porous SnO₂-based elements. Sensors and Actuators B: Chemical, 3, 147-55, 1991.
- [96] Chen, Y. J., Xue, X. Y., Wang, Y. G., Wang, T. H. Synthesis and ethanol sensing characteristics of single crystalline SnO₂ nanorods. Applied Physics Letters, 87, 233503, 2005.
- [97] Zheng, Y., Wang, J., Yao, P. Formaldehyde sensing properties of electrospun NiO-doped SnO₂ nanofibers. Sensors and Actuators B: Chemical, 156, 723-30, 2011.
- [98] Fayat, J., Castro, M. S. Defect profile and microstructural development in SnO₂-based varistors. Journal of the European Ceramic Society, 23, 1585-91, 2003.
- [99] Zhou, Q., Chen, W., Xu, L., Kumar, R., Gui, Y., Zhao, Z., Tang, C., Zhu, S. Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO₂ nanomaterials. Ceramics International, 44, 4392-9, 2017.
- [100] Kou, X., Wang, C., Ding, M., Feng, C., Li, X., Ma, J., Zhang, H., Sun, Y., Lu, G. Synthesis of Co-doped

 SnO_2 nanofibers and their enhanced gas-sensing properties. Sensors and Actuators B: Chemical, 236, 425-32, 2016.

- [101] Das, S., Jayaraman, V. SnO₂: a comprehensive review on structures and gas sensors. Progress in Materials Science, 66, 112-255, 2014.
- [102] Chen, W., Zhou, Q., Xu, L., Wan, F., Peng, S., Zeng, W. Improved methane sensing properties of Codoped SnO₂ electrospun nanofibers. Journal of Nanomaterials, 2013, 4, 2013.
- [103] Jiang, Z., Jiang, T., Wang, J., Wang, Z., Xu, X., Wang, Z., Zhao, R., Li, Z., Wang, C. Ethanol chemiresistor with enhanced discriminative ability from acetone based on Sr-doped SnO₂ nanofibers. Journal of Colloid and Interface Science, 437, 252-8, 2015.
- [104] Li, W.-T., Zhang, X.-D., Guo, X. Electrospun Nidoped SnO₂ nanofiber array for selective sensing of NO₂. Sensors and Actuators B: Chemical, 244, 509-21, 2017.
- [105] Katoch, A., Kim, J.-H., Kwon, Y. J., Kim, H. W., Kim, S. S. Bifunctional sensing mechanism of SnO₂– ZnO composite nanofibers for drastically enhancing the sensing behavior in H₂ gas. ACS Applied Materials & Interfaces, 7, 11351-8, 2015.
- [106] Byun, J.-H., Katoch, A., Choi, S.-W., Kim, J.-H., Kim, S. S. A novel synthesis route for Pt-loaded SnO₂ nanofibers and their sensing properties. Journal of Nanoscience and Nanotechnology, 14, 8253-7, 2014.
- [107] Lu, W., Ding, D., Xue, Q., Du, Y., Xiong, Y., Zhang, J., Pan, X., Xing, W. Great enhancement of CH₄ sensitivity of SnO₂ based nanofibers by heterogeneous sensitization and catalytic effect. Sensors and Actuators B: Chemical, 254, 393-401, 2018.
- [108] Kim, J.-H., Abideen, Z. U., Zheng, Y., Kim, S. S. Improvement of toluene-sensing performance of SnO₂ nanofibers by Pt functionalization. Sensors, 16, 1857, 2016.
- [109] [109] Katoch, A., Byun, J.-H., Choi, S.-W., Kim, S. S. One-pot synthesis of Au-loaded SnO₂ nanofibers and their gas sensing properties. Sensors and Actuators B: Chemical, 202, 38-45, 2014.
- [110] [110] Tang, W., Wang, J., Qiao, Q., Liu, Z., Li, X. Mechanism for acetone sensing property of Pdloaded SnO₂ nanofibers prepared by electrospinning: Fermi-level effects. Journal of Materials Science, 50, 2605-15, 2015.
- [111] Yang, J., Gao, C., Yang, H., Wang, X., Jia, J. High selectivity of a CuO modified hollow SnO₂ nanofiber gas sensor to H₂S at low temperature. The European Physical Journal Applied Physics, 79, 1-5, 2017.
- [112] Feng, C., Li, X., Wang, C., Sun, Y., Zheng, J., Lu, G.

Facile synthesis benzene sensor based on V_2O_5 doped SnO₂ nanofibers. RSC Advances, 4, 47549-55, 2014.

- [113] Cojocaru, B., Avram, D., Kessler, V., Parvulescu, V., Seisenbaeva, G., Tiseanu, C. Nanoscale insights into doping behavior, particle size and surface effects in trivalent metal doped SnO₂. Scientific Reports, 7, 9598, 2017.
- [114] Jinkawa, T., Sakai, G., Tamaki, J., Miura, N., Yamazoe, N. Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides. Journal of Molecular Catalysis A: Chemical, 155, 193-200, 2000.
- [115] Matsushima, S., Maekawa, T., Tamaki, J., Miura, N., Yamazoe, N. Role of additives on alcohol sensing by semiconductor gas sensor. Chemistry Letters, 18, 845-8, 1989.
- [116] Krivetskiy, V. V., Rumyantseva, M. N., Gaskov, A. M. Chemical modification of nanocrystalline tin dioxide for selective gas sensors. Russian Chemical Reviews, 82, 917, 2013.
- [117] Huang, S., Matsubara, K., Cheng, J., Li, H., Pan, W. Highly enhanced ultraviolet photosensitivity and recovery speed in electrospun Ni-doped SnO₂ nanobelts. Applied Physics Letters, 103, 141108, 2013.
- [118] Azam, A., Ahmed, A. S., Ansari, M. S., Naqvi, A. H. Study of electrical properties of nickel doped SnO₂ ceramic nanoparticles. Journal of Alloys and Compounds, 506, 237-42, 2010.
- [119] Guan, Y., Wang, D., Zhou, X., Sun, P., Wang, H., Ma, J., Lu, G. Hydrothermal preparation and gas sensing properties of Zn-doped SnO₂ hierarchical architectures. Sensors and Actuators B: Chemical, 191, 45-52, 2014.
- [120] Sun, P., Zhou, X., Wang, C., Wang, B., Xu, X., Lu, G. One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO₂ nanostructures. Sensors and Actuators B: Chemical, 190, 32-9, 2014.
- [121] Liu, L., Zhang, Y., Wang, G., Li, S., Wang, L., Han, Y., Jiang, X., Wei, A. High toluene sensing properties of NiO–SnO₂ composite nanofiber sensors operating at 330° C. Sensors and Actuators B: Chemical, 160, 448-54, 2011.
- [122] Afzal, A., Cioffi, N., Sabbatini, L., Torsi, L. NOx sensors based on semiconducting metal oxide nanostructures: progress and perspectives. Sensors and Actuators B: Chemical, 171, 25-42, 2012.
- [123] Ruhland, B., Becker, T., Müller, G. Gas-kinetic interactions of nitrous oxides with SnO₂ surfaces. Sensors and Actuators B: Chemical, 50, 85-94, 1998.
- [124] Yan, S. H., Ma, S. Y., Li, W. Q., Xu, X. L., Cheng, L., Song, H. S., Liang, X. Y. Synthesis of SnO₂–ZnO

heterostructured nanofibers for enhanced ethanol gas-sensing performance. Sensors and Actuators B: Chemical, 221, 88-95, 2015.

- [125] Guo, W., Wang, Z. Composite of ZnO spheres and functionalized SnO₂ nanofibers with an enhanced ethanol gas sensing properties. Materials Letters, 169, 246-9, 2016.
- [126] Song, X., Wang, Z., Liu, Y., Wang, C., Li, L. A highly sensitive ethanol sensor based on mesoporous ZnO–SnO₂ nanofibers. Nanotechnology, 20, 075501, 2009.
- [127] Katoch, A., Choi, S.-W., Sun, G.-J., Kim, S. S. An approach to detecting a reducing gas by radial modulation of electron-depleted shells in core-shell nanofibers. Journal of Materials Chemistry A, 1, 13588-96, 2013.
- [128] Park, J.-A., Moon, J., Lee, S.-J., Kim, S. H., Chu, H. Y., Zyung, T. SnO₂–ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor. Sensors and Actuators B: Chemical, 145, 592-5, 2010.
- [129] Lu, G., Xu, J., Sun, J., Yu, Y., Zhang, Y., Liu, F. UV-enhanced room temperature NO₂ sensor using ZnO nanorods modified with SnO₂ nanoparticles. Sensors and Actuators B: Chemical, 162, 82-8, 2012.
- [130] Kim, K.-W., Cho, P.-S., Kim, S.-J., Lee, J.-H., Kang, C.-Y., Kim, J.-S., Yoon, S.-J. The selective detection of C₂H₅OH using SnO₂–ZnO thin film gas sensors prepared by combinatorial solution deposition. Sensors and Actuators B: Chemical, 123, 318-24, 2007.
- [131] Wang, Y., Meyer, B., Yin, X., Kunat, M., Langenberg, D., Traeger, F., Birkner, A., Wöll, C. Hydrogen induced metallicity on the ZnO (101⁻⁰) surface. Physical Review Letters, 95, 266104, 2005.
- [132] Wang, C., Zhou, G., Li, J., Yan, B., Duan, W. Hydrogen-induced metallization of zinc oxide (21⁻1⁻0) surface and nanowires: the effect of curvature. Physical Review B, 77, 245303, 2008.
- [133] Katoch, A., Choi, S.-W., Kim, H. W., Kim, S. S. Highly sensitive and selective H2 sensing by ZnO nanofibers and the underlying sensing mechanism. Journal of Hazardous Materials, 286, 229-35, 2015.
- [134] Xu, H., Fan, W., Rosa, A. L., Zhang, R. Q., Frauenheim, T. Hydrogen and oxygen adsorption on ZnO nanowires: a first-principles study. Physical Review B, 79, 073402, 2009.
- [135] Kou, L., Li, C., Zhang, Z., Guo, W. Electric-fieldand hydrogen-passivation-induced band modulations in armchair ZnO nanoribbons. The Journal of Physical Chemistry C, 114, 1326-30, 2009.
- [136] Katoch, A., Abideen, Z. U. I., Kim, H. W., Kim, S. S. Grain-size-tuned highly H₂-selective chemiresistive sensors based on ZnO–SnO₂ composite nanofibers. ACS Applied Materials & Interfaces, 8, 2486-94,

2016.

- [137] Cox, S. F. J., Davis, E. A., Cottrell, S. P., King, P. J. C., Lord, J. S., Gil, J. M., Alberto, H. V., Vilão, R. C., Duarte, J. P., de Campos, N. A. Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Physical Review Letters, 86, 2601-4, 2001.
- [138] Deinert, J.-C., Hofmann, O. T., Meyer, M., Rinke, P., Stähler, J. Local aspects of hydrogen-induced metallization of the ZnO (101⁻⁰) surface. Physical Review B, 91, 235313, 2015.
- [139] Desimone, P. M., Díaz, C. G., Tomba, J. P., Aldao, C. M., Ponce, M. A. Reversible metallization of SnO₂ films under hydrogen and oxygen containing atmospheres. Journal of Materials Science, 51, 4451-61, 2016.
- [140] Sayago, I., Hontañón, E., Aleixandre, M., Fernández, M. J., Santos, J. P., Gràcia, I. ZnO and ZnO/SnO₂ nanofibers as resistive gas sensors for NO₂ detection. 2017 Spanish Conference on Electron Devices (CDE): IEEE; 2017. p. 1-4.
- [141] Choi, S.-W., Zhang, J., Akash, K., Kim, S. S. H₂S sensing performance of electrospun CuO-loaded SnO₂ nanofibers. Sensors and Actuators B: Chemical, 169, 54-60, 2012.
- [142] Tamaki, J., Maekawa, T., Miura, N., Yamazoe, N. CuO-SnO₂ element for highly sensitive and selective detection of H₂S. Sensors and Actuators B: Chemical, 9, 197-203, 1992.
- [143] Choi, S.-W., Katoch, A., Zhang, J., Kim, S. S. Electrospun nanofibers of CuO-SnO₂ nanocomposite as semiconductor gas sensors for H_2S detection. Sensors and Actuators B: Chemical, 176, 585-91, 2013.
- [144] Bai, S., Guo, W., Sun, J., Li, J., Tian, Y., Chen, A., Luo, R., Li, D. Synthesis of SnO₂–CuO heterojunction using electrospinning and application in detecting of CO. Sensors and Actuators B: Chemical, 226, 96-103, 2016.
- [145] Jang, B.-H., Landau, O., Choi, S.-J., Shin, J., Rothschild, A., Kim, I.-D. Selectivity enhancement of SnO₂ nanofiber gas sensors by functionalization with Pt nanocatalysts and manipulation of the operation temperature. Sensors and Actuators B: Chemical, 188, 156-68, 2013.
- [146] Cheng, L., Ma, S. Y., Wang, T. T., Li, X. B., Luo, J., Li, W. Q., Mao, Y. Z., Gz, D. J. Synthesis and characterization of SnO₂ hollow nanofibers by electrospinning for ethanol sensing properties. Materials Letters, 131, 23-6, 2014.
- [147] Cheng, L., Ma, S. Y., Li, X. B., Luo, J., Li, W. Q., Li, F. M., Mao, Y. Z., Wang, T. T., Li, Y. F. Highly sensitive acetone sensors based on Y-doped SnO₂ prismatic hollow nanofibers synthesized by electrospinning. Sensors and Actuators B: Chemical,

200, 181-90, 2014.

- [148] Li, W. Q., Ma, S. Y., Li, Y. F., Li, X. B., Wang, C. Y., Yang, X. H., Cheng, L., Mao, Y. Z., Luo, J., Gengzang, D. J. Preparation of Pr-doped SnO₂ hollow nanofibers by electrospinning method and their gas sensing properties. Journal of Alloys and Compounds, 605, 80-8, 2014.
- [149] Mohanapriya, P., Segawa, H., Watanabe, K., Watanabe, K., Samitsu, S., Natarajan, T. S., Jaya, N. V., Ohashi, N. Enhanced ethanol-gas sensing performance of Ce-doped SnO₂ hollow nanofibers prepared by electrospinning. Sensors and Actuators B: Chemical, 188, 872-8, 2013.
- [150] Liu, Y., Yang, P., Li, J., Matras-Postolek, K., Yue, Y., Huang, B. Formation of SiO₂@SnO₂ core-shell nanofibers and their gas sensing properties. RSC Advances, 6, 13371-6, 2016.
- [151] Wan, G. X., Ma, S. Y., Sun, X. W., Sun, A. M., Li, X. B., Luo, J., Li, W. Q., Wang, C. Y. Synthesis of wrinkled and porous ZnO–SnO₂ hollow nanofibers and their gas sensing properties. Materials Letters, 145, 48-51, 2015.
- [152] Santibenchakul, S., Chaiyasith, S., Pecharapa, W. Effect of PVP concentration on microstructure and physical properties of electrospun SnO₂ nanofibers. Integrated Ferroelectrics, 175, 130-7, 2016.
- [153] He, J.-H., Wan, Y.-Q., Yu, J.-Y. Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fibers and Polymers, 9, 140-2, 2008.
- [154] Calvache-Muñoz, J., Prado, F. A., Rodríguez-Páez, J. E. Cerium oxide nanoparticles: synthesis, characterization and tentative mechanism of particle formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 146-59, 2017.
- [155] Joy, N. A., Nandasiri, M. I., Rogers, P. H., Jiang, W., Varga, T., Kuchibhatla, S. V. N. T., Thevuthasan, S., Carpenter, M. A. Selective plasmonic gas sensing: H₂, NO₂, and CO spectral discrimination by a single Au-CeO₂ nanocomposite film. Analytical Chemistry, 84, 5025-34, 2012.
- [156] Xiong, Y., Xue, Q., Ling, C., Lu, W., Ding, D., Zhu, L., Li, X. Effective CO₂ detection based on LaOCldoped SnO₂ nanofibers: Insight into the role of oxygen in carrier gas. Sensors and Actuators B: Chemical, 241, 725-34, 2017.
- [157] Nagasawa, Y., Choso, T., Karasuda, T., Shimomura, S., Ouyang, F., Tabata, K., Yamaguchi, Y. Photoemission study of the interaction of a reduced thin film SnO₂ with oxygen. Surface Science, 433, 226-9, 1999.
- [158] Kolmakov, A., Potluri, S., Barinov, A., Mentes, T. O., Gregoratti, L., Nino, M. A., Locatelli, A., Kiskinova, M. Spectromicroscopy for addressing the surface and electron transport properties of individual 1-D nanostructures and their networks. ACS Nano, 2,

1993-2000, 2008.

- [159] Ma, T. Y., Yuan, Z. Y., Cao, J. L. Hydrangea-like meso-/macroporous ZnO-CeO₂ binary oxide materials: synthesis, photocatalysis and CO oxidation. European Journal of Inorganic Chemistry, 2010, 716-24, 2010.
- [160] Liao, L., Mai, H. X., Yuan, Q., Lu, H. B., Li, J. C., Liu, C., Yan, C. H., Shen, Z. X., Yu, T. Single CeO₂ nanowire gas sensor supported with Pt nanocrystals: gas sensitivity, surface bond states, and chemical mechanism. The Journal of Physical Chemistry C, 112, 9061-5, 2008.
- [161] Belmonte, J. C., Manzano, J., Arbiol, J., Cirera, A., Puigcorbe, J., Vila, A., Sabate, N., Gracia, I., Cane, C., Morante, J. R. Micromachined twin gas sensor for CO and O₂ quantification based on catalytically modified nano-SnO₂. Sensors and Actuators B: Chemical, 114, 881-92, 2006.
- [162] Huang, J., Wang, L., Gu, C., Zhai, M., Liu, J. Preparation of hollow porous Co-doped SnO₂ microcubes and their enhanced gas sensing property. Cryst. Eng. Comm., 15, 7515-21, 2013.
- [163] Hu, P., Han, N., Zhang, D., Ho, J. C., Chen, Y. Highly formaldehyde-sensitive, transition-metal doped ZnO nanorods prepared by plasma-enhanced chemical vapor deposition. Sensors and Actuators B: Chemical, 169, 74-80, 2012.
- [164] Chang, C.-M., Hon, M.-H., Leu, C. Improvement in CO sensing characteristics by decorating ZnO nanorod arrays with Pd nanoparticles and the related mechanisms. RSC Advances, 2, 2469-75, 2012.
- [165] Kolmakov, A., Moskovits, M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annual Review of Materials Research, 34, 151-80, 2004.
- [166] Dong, K.-Y., Choi, J.-K., Hwang, I.-S., Lee, J.-W., Kang, B. H., Ham, D.-J., Lee, J.-H., Ju, B.-K. Enhanced H2S sensing characteristics of Pt doped SnO₂ nanofibers sensors with micro heater. Sensors and Actuators B: Chemical, 157, 154-61, 2011.
- [167] Jiang, Z., Yin, M., Wang, C. Facile synthesis of Ca^{2+}/Au co-doped SnO₂ nanofibers and their application in acetone sensor. Materials Letters, 194, 209-12, 2017.
- [168] Chen, Z., Chen, Z., Zhang, A., Hu, J., Wang, X., Yang, Z. Electrospun nanofibers for cancer diagnosis and therapy. Biomaterials Science, 4, 922-32, 2016.
- [169] Deitzel, J. M., Kleinmeyer, J., Harris, D. E. A., Tan, N. C. B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261-72, 2001.
- [170] Xu, X., Sun, J., Zhang, H., Wang, Z., Dong, B., Jiang, T., Wang, W., Li, Z., Wang, C. Effects of Al doping on SnO₂ nanofibers in hydrogen sensor.

Sensors and Actuators B: Chemical, 160, 858-63, 2011.

- [171] Xia, X., Dong, X. J., Wei, Q. F., Cai, Y. B., Lu, K. Y. Formation mechanism of porous hollow SnO₂ nanofibers prepared by one-step electrospinning. Express Polymer Letters, 6, 169-76, 2012.
- [172] Yan, Z., Xiu-Li, H., Jian-Ping, L., Jian, J., Xiao-Guang, G. Enhanced gas sensing properties of aligned porous SnO₂ nanofibers. Chinese Physics Letters, 29, 070701, 2012.